Skip to main content
Log in

Interaction study of mixed micellar system of isoquinoline based surface active ionic liquids and cationic surfactant in aqueous medium

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Surface-active ionic liquids (SAILs) can modify the physiological properties of conventional surfactants. Mixed micelles of isoquinoline-based SAILs, dodecylisoquinolinium bromide [C12iQuin][Br], tetradecylisoquinolinium bromide [C14iQuin][Br] and cationic surfactant, dodecyltrimethylammonium bromide (DTAB) in aqueous medium and their interactions have been studied by employing conductometry and 1H NMR technique. The critical micelle concentration (cmc) and various thermodynamic parameters have been calculated from conductometry measurements. Mixed micellar parameters such as ideal cmc (cmc*), micellar mole fraction (\( {X}_1^m \)), micellar interaction parameter (βm) and activity coefficients (f1) and (f2) of component 1 (SAIL) and component 2 (DTAB) have been evaluated by applying Clint, Rubingh and Motomura theoretical models. The interaction between SAILs and surfactant has been found synergistic and non-ideal. The peak merging and broadening of protons suggests the growth of micelles. Use of SAILs as an additive effectively reduce the cmc that is indicated by negative value of interaction parameter (βm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084. https://doi.org/10.1021/cr980032t

    Article  CAS  Google Scholar 

  2. Dupont J, De Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102(10):3667–3692. https://doi.org/10.1021/cr010338r

    Article  CAS  PubMed  Google Scholar 

  3. Seddon KR (2003) Ionic liquids: a taste of future. Nature 2:360–365

    Article  CAS  Google Scholar 

  4. Mehnert CP, Cook RA, Dispenziere NC, Afeworki M (2002) Supported ionic liquid catalysis—a new concept for homogeneous hydroformylation catalysis. J Am Chem Soc 124(44):12932–12933. https://doi.org/10.1021/ja0279242

    Article  CAS  PubMed  Google Scholar 

  5. Wilkes JS (2002) A short history of ionic liquids- from molten salts to neoteric solvents. Green Chem 73(4):73–80. https://doi.org/10.1039/B110838G

    Article  Google Scholar 

  6. Earle MJ, Esperanca JMSS, Gilea MA, Lopes JNC, Rebelo LPN, Maggee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831–834. https://doi.org/10.1038/nature04451

    Article  CAS  PubMed  Google Scholar 

  7. Mahajan S, Sharma R, Mahajan RK (2013) Surface adsorption and mixed micelle formation of surface active ionic liquid in cationic surfactants: conductivity, surface tension, fluorescence and NMR studies. Colloids Surf A Physicochem Eng Asp 427:62–75. https://doi.org/10.1016/j.colsurfa.2013.03.023

    Article  CAS  Google Scholar 

  8. Shi L, Jing X, Gao H, Gu Y, Zheng L (2013) Ionic liquid induced changes in the properties of aqueous sodium sulfate solution: effect of acidic/basic functional groups. Colloid Polym Sci 291:1601–1612. https://doi.org/10.1007/s00396-013-2894-0

    Article  CAS  Google Scholar 

  9. Cognigni A, Gaertner P, Zirbs R, Peterlik H, Prochazka K, Schroder C, Bica K (2016) Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutitions. Phys Chem Chem Phys 18:13375–13384. https://doi.org/10.1039/C6CP00493H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eber J, Wasserscheid P, Jess A (2004) Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chem 6:316–322. https://doi.org/10.1039/B407028C

    Article  CAS  Google Scholar 

  11. Pendletton JN, Gilmore PB (2015) The antimicrobial potential of ionic liquids: a source of chemical diversity for infection and biofilm control. Int J Antimicrob Agents 46(2):131–139. https://doi.org/10.1016/j.ijantimicag.2015.02.016

    Article  CAS  Google Scholar 

  12. Cornellas A, Perez L, Comelles F, Ribosa I, Manresa A, Teresa GM (2011) Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J Colloid Interface Sci 355(1):164–171. https://doi.org/10.1016/j.jcis.2010.11.063

    Article  CAS  PubMed  Google Scholar 

  13. Culter WG, Kirsa E (1987) Detergency: theory and practical. Marcel Dekker, New York

    Google Scholar 

  14. Salwa MIM (2014) Role of surfactants in nanotechnology and their applications. Int J Curr Microbiol App Sci 3(5):237–260

    Google Scholar 

  15. Reiger MM (1985) Surfactants in cosmetics. Marcel Dekker, New York

    Google Scholar 

  16. Hemmateeenejad B, Safavai A, Dorostkar S (2011) Aggregation of imidazolium based ionic liquids in binary methanol-water solvents: a linear solvation free energy relationship study. J Mol Liq 160:35–39. https://doi.org/10.1016/j.molliq.2011.02.011

    Article  CAS  Google Scholar 

  17. Chabba S, Kumar S, Aswal VK, Kang TS, Mahajan RK (2015) Interfacial and aggregation behaviour of aqueous mixtures of imidazolium based surface active ionic liquids and anionic surfactants sodium dodecylbenzenesulfonate. Colloids Surf A Physicochem Eng Asp 472:9–20. https://doi.org/10.1016/j.colsurfa.2015.02.032

    Article  CAS  Google Scholar 

  18. Comelles F, Ribosa I, Gonzalez JJ, Garcia MT (2015) Catanionic surfactant formation from the interaction of the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) and the ionic liquid 1-butyl-3-methylimidazolium octylsulfate (bmim-octyl SO4) in aqueous solution. Colloids Surf A Physicochem Eng Asp 484:136–143. https://doi.org/10.1016/j.colsurfa.2015.07.051

    Article  CAS  Google Scholar 

  19. Smirnova NA, Vanin AA, Safonova EA, Pukinsky IB, Anufrikov YA, Makarov AL (2009) Self-assembly in aqueous solutions of imidazolium ionic liquids and their mixtures with an anionic surfactant. J Colloid Interface Sci 336:793–802. https://doi.org/10.1016/j.jcis.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  20. Thakkar K, Bharatiya B, Shah DO, Ray D, Aswal VK, Bahadur P (2015) Interaction of ionic liquid type cationic surfactants with triton X-100 nonionic micelles. Colloids Surf A Physicochem Eng Asp 484:547–557. https://doi.org/10.1016/j.colsurfa.2015.08.039

    Article  CAS  Google Scholar 

  21. Nagarajan R (1985) Molecular theory for mixed micelles. Langmuir 1:331–341. https://doi.org/10.1021/la00063a012

    Article  CAS  Google Scholar 

  22. Wang XH, Qin L (2017) Surface adsorption and thermodynamic properties of mixed systems of ionic liquid surfactants with cetyltrimethylammonium bromide. RSC Adv 7:51426–51435. https://doi.org/10.1039/c7ra08915e

    Article  CAS  Google Scholar 

  23. Zheng P, Yin H, Zhao J, Shen W (2016) Measurements of the interaction enthalpy for mixed micelles of dodecyltrimethylammonium bromide and 1-dodecyl-3-methylimidazolium bromide. J Ind Eng Chem 44:204–209. https://doi.org/10.1016/j.jiec.2016.09.001

    Article  CAS  Google Scholar 

  24. Zheng P, Cai D, Zhao J, Shen W (2017) Thermodynamic properties of mixed surfactants of dodecyltrimethylammonium bromide and 1-dodecyl-3-methylimidazolium bromide. J Chem Thermodynamics 115:394–398. https://doi.org/10.1016/j.jct.2016.10.039

    Article  CAS  Google Scholar 

  25. Qi X, Zhang X, Luo G, Han C, Liu C, Zhang S (2013) Mixing behaviour of conventional cationic surfactants and ionic liquid surfactant 1-tetradecyl-3-methylimidazolium bromide [C14mim][Br] in aqueous medium. J Disp Technol 34:125–133. https://doi.org/10.1080/01932691.2011.653926

    Article  CAS  Google Scholar 

  26. Dutta R, Ghosh S, Banerjee P, Kundu S, Sarkar N (2016) Micelle-vesicle-micelle transition in aqueous solutions of anionic surfactant and cationic imidazolium surfactants: alteration of the location of different fluorophores. J Colloid Interface Sci 490:762–773. https://doi.org/10.1016/j.jcis.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  27. Wang GY, Wang YY, Wang XH (2017) Aggregation behaviours of mixed systems for the imidazole based ionic liquid surfactant and triton X-100. J Mol Liq 232:55–61. https://doi.org/10.1016/j.molliq.2017.02.044

    Article  CAS  Google Scholar 

  28. Dutta R, Kundu S, Sarkar N (2018) Ionic liquid-induced aggregate formation and their formation. Biophys Rev 10:861–871. https://doi.org/10.1007/s12551-018-0408-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghosh S, Ghatak C, Banerjee C, Mandal S, Kuchlyan J, Sarkar N (2013) Spontaneous transition of micelle-vesicle-micelle in a mixture of cationic surfactant and anionic surfactant-like ionic liquid: a pure non-lipid small uni-lamellar vesicular template used for solvent and rotational relaxation study. Langmuir 29(32):10066–10076. https://doi.org/10.1021/la402053a

    Article  CAS  PubMed  Google Scholar 

  30. Thakkar K, Patel V, Ray D, Pal H, Aswal VK, Bahadur P (2016) Interaction of imidazolium based ionic liquids with triton X-100 micelles: investigating the role of the counter ion and chain length. RSC Adv 6:36314–36326. https://doi.org/10.1021/je400861g

    Article  CAS  Google Scholar 

  31. Zhang Z, Wei Y, Wang F, Ren C, Lin Y (2014) Micellization and thermodynamic study of 1-Alkyl-3-Methylimdazolium tetra fluoroborate ionic liquids in aqueous solution. J Chem Eng Data 59(4):1120–1129. https://doi.org/10.1021/je400861g

    Article  CAS  Google Scholar 

  32. Ali A, Farooq U, Uzair S, Patel R (2016) Conductometric and tensiometric studies on the mixed micellar systems of surface active ionic liquid and cationic surfactants in aqueous medium. J Mol Liq 223:589–602. https://doi.org/10.1016/j.molliq.2016.08.0

    Article  CAS  Google Scholar 

  33. Aswal VK, Padsala S, Dharaiya N, Ray D, , Sastry NV, Bahadur P (2018) Self-organization of mixtures of sodium oleate and imidazolium based surface active ionic liquids studied by tensiometry, rheology and neutron scattering. J Mol Liq 249:573–582. https://doi.org/10.1016/j.molliq.2017.10.108

    Article  CAS  Google Scholar 

  34. Sastry NV, Vaghela NM, Macwan PM, Soni SS, Aswal VK, Gibaud A (2012) Aggregation behaviour of pyridinium based ionic liquids in water- surface tension, 1H NMR chemical shifts, SANS and SAXS measurements. J Colloid Interface Sci 371:52–61. https://doi.org/10.1016/j.jcis.2011.12.077

    Article  CAS  PubMed  Google Scholar 

  35. Bandres I, Meler S, Giner B, Cea P, Lafuente C (2009) Aggregation behaviour of pyridinium based ionic liquids in aqueous solution. J Solut Chem 38:1622–1634. https://doi.org/10.1007/s10953-009-9474-4

    Article  CAS  Google Scholar 

  36. Zhang X, Ge L, Lei Y, Liu Z, Guo R (2014) Micellization behaviour of the ionic liquid lauryl isoquinolinium bromide in aqueous solution. Colloid Polym Sci 292:1111–1120. https://doi.org/10.1007/s00396-013-3151-2

    Article  CAS  Google Scholar 

  37. Pal A, Mann R (2018) Interactional behaviour of surface active ionic liquid lauryl isoquinolinium bromide and anionic polyelectrolyte poly(4-styrenesulfonic acid-co-maleic acid) sodium salt in aqueous solution. Colloid Polym Sci 296:483–494. https://doi.org/10.1007/s00396-018-4263-5

    Article  CAS  Google Scholar 

  38. Clint JH (1975) Micellization of mixed non-ionic surface active agents. J Chem Soc Faraday Trans 71(1):1327–1334. https://doi.org/10.1039/F19757101327

    Article  CAS  Google Scholar 

  39. Rubingh DN, Mittal KL (1979) Solution chemistry of surfactants, vol 337. Plenum Press, New York

    Google Scholar 

  40. Motomura K, Yamanaka M, Aratono M (1984) Thermodynamic consideration of the mixed micelle of the surfactants. Colloid Polym Sci 262:948–955. https://doi.org/10.1007/BF01490027

    Article  CAS  Google Scholar 

  41. Aratono M, Villeneuve M, Takiue T, Ikeda N, Iyota H (1998) Thermodynamic tconsideration of mixtures of surfactants in adsorbed films and micelles. J Colloid Interface Sci 200:161–171. https://doi.org/10.1006/jcis.1997.5369

    Article  CAS  Google Scholar 

  42. Inoue T, Ebina H, Dong B, Zheng L (2007) Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J Colloid Interface Sci 314(1):236–241. https://doi.org/10.1016/j..jcis.2007.05.052

    Article  CAS  PubMed  Google Scholar 

  43. Singh T, Kumar A (2008) Self-aggregation of ionic liquids in aqueous media: a thermodynamic study. Colloids Surf A Physicochem Eng Asp 318(1–3):263–268. https://doi.org/10.1016/j.colsurfa.2007.12.043

    Article  CAS  Google Scholar 

  44. Pal A, Pillania A (2015) The effect of hydrophilic ionic liquid 1-butyl-2,3-dimethylimidazolium bromide on the aggregation behaviour of tetradecyltrimethylammonium bromide in aqueous media. J Mol Liq 209:6–13. https://doi.org/10.1016/j.molliq.2015.04.0631

    Article  CAS  Google Scholar 

  45. Junquera E, Aicart E (2002) Mixed micellization of dodecylethyldimethylammonium bromide and docecyltrimethylammonium bromide in aqueous solution. Langmuir 18(24):9250–9258. https://doi.org/10.1021/la026121p

    Article  CAS  Google Scholar 

  46. Rosen MJ (1988) Surfactants and interfacial phenomenon2nd edn. Wiley, New York

    Google Scholar 

  47. Azum N, Naqui AZ, Akram M, Din-Ud K (2008) Mixing behaviour of conventional and gemini cationic surfactants. J Dispers Sci Technol 29:711–717. https://doi.org/10.1080/01932690701756735

    Article  CAS  Google Scholar 

  48. Zhang S, Gao Y, Dong B, Zheng L (2010) Interaction between the added long-chain ionic liquid 1-dodecyl-3-methylimidazolium tetrafluoroborate and triton X-100 in aqueous solutions. Colloids Surf A Physicochem Eng Asp 372:182–189. https://doi.org/10.1016/j.colasurfa2010.10.011

    Article  CAS  Google Scholar 

Download references

Funding

The author acknowledge the financial support for work by the Council of Scientific and Industrial Research (CSIR), Government of India (Grant No. 21(1005)/15/EMR-II) through Emeritus Scientist grant of Prof. A. Pal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalendu Pal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, A., Punia, R. Interaction study of mixed micellar system of isoquinoline based surface active ionic liquids and cationic surfactant in aqueous medium. Colloid Polym Sci 297, 1011–1024 (2019). https://doi.org/10.1007/s00396-019-04519-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04519-0

Keywords

Navigation