Skip to main content
Log in

Highly Swollen Adsorption Layer Formed by Polymeric Friction Modifier Providing Low Friction at Higher Temperature

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

To reduce friction, especially under high-temperature conditions, an oil-soluble polymeric friction modifier (polymeric FM) with a methacrylate backbone and hydroxyl groups has been developed. It was designed to have high adsorption performance and to increase in size when dissolved in base oil as the temperature is increased. To investigate the temperature dependence of the structural and tribological characteristics of the adsorbed layer formed on a metal surface by the polymeric FM, neutron reflectometry measurements and nano-to-macro tribological tests were conducted. The measurements revealed that the polymeric FM adsorbed efficiently on a Cu surface and formed a 6.0-nm-thick adsorbed layer at 23 °C. This adsorbed layer was highly swollen, and its thickness became about three times larger at 100 °C. Nanoscale friction tests using an atomic force microscope showed that the swollen-state adsorbed polymeric FM layer exhibited low-friction and surface-protection performance at 100 °C. Macroscale friction tests revealed the tribological behaviour of an adsorbed polymeric FM layer in elastohydrodynamic lubrication and mixed lubrication regimes. At higher temperatures, the increase in shear resistance due to the effect of thin-film lubrication was suppressed by the weaker segment–segment interaction, causing the boundary contact of the adsorbed polymeric FM layer to have low frictional properties on both ball and disc surfaces. The low-friction mechanism of the adsorbed polymeric FM layer at higher temperatures was justified by associating the temperature with the layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004)

    Article  CAS  Google Scholar 

  2. de Barros’Bouchet, M.I., Martin, J.M., Le-Mogne, T., Vacher, B.: Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 38, 257–264 (2005)

    Article  Google Scholar 

  3. Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions and their effect on tribological performance - Tribofilm characteristics and its evolution. Tribol. Lett. 24, 243–256 (2006)

    Article  CAS  Google Scholar 

  4. Graham, J., Spikes, H., Korcek, S.: The friction reducing properties of molybdenum dialkyldithiocarbamate additives: part I — factors influencing friction reduction. Tribol. Trans. 44, 626–636 (2001)

    Article  CAS  Google Scholar 

  5. Graham, J., Spikes, H., Korcek, S.: The friction reducing properties of molybdenum dialkyldithiocarbamate additives: part II — durability of friction reducing capability. Ibol. Trans. 44, 637–647 (2001)

    CAS  Google Scholar 

  6. Spikes, H.: Friction modifier additives. Tribol. Lett. (2015). https://doi.org/10.1007/s11249-015-0589-z

    Article  Google Scholar 

  7. Loehle, S., Matta, C., Minfray, C., Mogne, T.L., Martin, J.-M., Iovine, R., Obara, Y., Miura, R., Miyamoto, A.: Mixed lubrication with C18 fatty acids: effect of unsaturation. Tribol. Lett. 53, 319–328 (2014)

    Article  CAS  Google Scholar 

  8. Simič, R., Kalin, M.: Comparison of alcohol and fatty acid adsorption on hydrogenated DLC coatings studied by AFM and tribological tests. Stroj. Vestn.-J. Mech. Engg. 59, 707–718 (2013)

    Article  Google Scholar 

  9. Desanker, M., He, X., Liu, P., Pickens, D.B., Delferro, M., Marks, T.J., Chung, Y.W., Wang, Q.J.: Alkyl-cyclens as effective sulfur-and phosphorus-free friction modifiers for boundary lubrication. ACS Appl. Mater. Interfaces 9, 9118–9125 (2017)

    Article  CAS  Google Scholar 

  10. Bay, N., Azushima, A., Groche, P., Ishibashi, I., Merklein, M., Morishita, M., Nakamura, T., Schmid, S., Yoshida, M.: Environmentally benign tribo-systems for metal forming. CIRP Ann. Manuf. Technol. 59, 760–780 (2010)

    Article  Google Scholar 

  11. Smeeth, M., Spikes, H., Gunsel, S.: Boundary film formation by viscosity index improvers. Tribol. Trans. 39, 726–734 (1996)

    Article  CAS  Google Scholar 

  12. Fan, J., Müller, M., Stöhr, T., Spikes, H.A.: Reduction of friction by functionalised viscosity index improvers. Tribol. Lett. 28, 287–298 (2007)

    Article  CAS  Google Scholar 

  13. Müller, M., Topolovec-Miklozic, K., Dardin, A., Spikes, H.A.: The design of boundary film-forming PMA viscosity modifiers. Tribol. Trans. 49, 225–232 (2006)

    Article  Google Scholar 

  14. Muraki, M., Nakamura, K.: Film-forming properties and traction of non- functionalized polyalkylmethacrylate solutions under transition from elastohydrodynamic lubrication to thin-film lubrication. Proc. Inst. Mech. Eng. 224, 55–63 (2010)

    Article  Google Scholar 

  15. Aoki, S., Yamada, Y., Fukada, D., Suzuki, A., Masuko, M.: Verification of the advantages in friction-reducing performance of organic polymers having multiple adsorption sites. Tribol. Int. 59, 57–66 (2013)

    Article  CAS  Google Scholar 

  16. Goto, R., Onodera, K., Sato, T., Hoshi, Y., Nanao, H., Mori, S.: In situ FTIR observation of the polymer FM enrichment at the EHL contact. Tribol. Online 15, 136–141 (2020)

    Article  Google Scholar 

  17. Tsujii, Y., Nomura, A., Okayasu, K., Gao, W., Ohno, K., Fukuda, T.: AFM studies on microtribology of concentrated polymer brushes in solvents. J. Phys. 184, 012031 (2010). https://doi.org/10.1088/1742-6596/184/1/012031

    Article  CAS  Google Scholar 

  18. Bielecki, R.M., Benetti, E.M., Kumar, D., Spencer, N.D.: Lubrication with oil-compatible polymer brushes. Tribol. Lett. 45, 477–487 (2012)

    Article  CAS  Google Scholar 

  19. Bielecki, R.M., Crobu, M., Spencer, N.D.: Polymer-brush lubrication in oil: sliding beyond the stribeck curve. Tribol. Lett. 49, 263–272 (2013)

    Article  CAS  Google Scholar 

  20. Mary, C., Philippon, D., Lafarge, L., Laurent, D., Rondelez, F., Bair, S., Vergne, P.: New insight into the relationship between molecular effects and the rheological behavior of polymer-thickened lubricants under high pressure. Tribol. Lett. 52, 357–369 (2013)

    Article  CAS  Google Scholar 

  21. Zachariah, Z., Nalam, P.C., Ravindra, A., Raju, A., Mohanlal, A., Wang, K., Castillo, R.V., Espinosa-Marzal, R.M.: Correlation between the adsorption and the nanotribological performance of fatty acid-based organic friction modifiers on stainless steel. Tribol. Lett. (2020). https://doi.org/10.1007/s11249-019-1250-z

    Article  Google Scholar 

  22. Hino, M., Oda, T., Kitaguchi, M., Yamada, N.L., Tasaki, S., Kawabata, Y.: The ion beam sputtering facility at KURRI: coatings for advanced neutron optical devices. Nucl. Inst. Methods Phys. Res. A 797, 265–270 (2015)

    Article  CAS  Google Scholar 

  23. Hirayama, T., Torii, T., Konishi, Y., Maeda, M., Matsuoka, T., Inoue, K., Hino, M., Yamazaki, D., Takeda, M.: Thickness and density of adsorbed additive layer on metal surface in lubricant by neutron reflectometry. Tribol. Int. 54, 100–105 (2012)

    Article  CAS  Google Scholar 

  24. Hirayama, T., Yamashita, N.: Combined use of neutron reflectometry and frequency-modulation atomic force microscopy for deeper understanding of tribology. Jpn. J. Appl. Phys. (2020). https://doi.org/10.35848/1347-4065/ab9c43

    Article  Google Scholar 

  25. Yamada, N.L., Torikai, N., Mitamura, K., Sagehashi, H., Sato, S., Seto, H., Sugita, T., Goko, S., Furusaka, M., Oda, T., Hino, M., Fujiwara, T., Takahashi, H., Takahara, A.: Design and performance of horizontal-type neutron reflectometer SOFIA at J-PARC/MLF. Eur. Phys. J. Plus 126, 1–13 (2011)

    Article  Google Scholar 

  26. Nelson, A.: Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT. J. Appl. Crystallogr. 39, 273–276 (2006)

    Article  CAS  Google Scholar 

  27. Welbourn, R.J.L., Truscott, C.L., Skoda, M.W.A., Zarbakhsh, A., Clarke, S.M.: Corrosion and inhibition of copper in hydrocarbon solution on a molecular level investigated using neutron reflectometry and XPS. Corros. Sci. 115, 68–77 (2017)

    Article  CAS  Google Scholar 

  28. Beaman, D.K., Robertson, E.J., Richmond, G.L.: Ordered polyelectrolyte assembly at the oil–water interface. Proc. Natl. Acad. Sci. 109, 3226–3231 (2012)

    Article  CAS  Google Scholar 

  29. Wiśniewska, M.: Temperature effects on the adsorption of polyvinyl alcohol on silica. Open Chem. 10, 1236–1244 (2012)

    Article  Google Scholar 

  30. Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: part III—fully flooded results. J. Lubr. Tech. 99, 264–275 (1977)

    Article  CAS  Google Scholar 

  31. Wu, C.S., Klaus, E.E., Duda, J.L.: Development of a method for the prediction of pressure-viscosity coefficients of lubricating oils based on free-volume theory. J. Tribol. 111, 121–128 (1989)

    Article  CAS  Google Scholar 

  32. Luo, J., Wen, S., Huang, P.: Thin film lubrication. Part I. Study on the transition between EHL and thin film lubrication using a relative optical interference intensity technique. Wear 194, 107–115 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The polymeric FM was kindly provided by Sanyo Chemical Industry Co., Ltd. The Cu films for the neutron reflectometry were kindly prepared by Professor Masahiro Hino at the Institute for Integrated Radiation and Nuclear Science, Kyoto University. The neutron experiment at the Materials and Life Science Experimental Facility of the J-PARC was performed under a user program (2019A0064)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Yamashita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, N., Hirayama, T., Yamada, N.L. et al. Highly Swollen Adsorption Layer Formed by Polymeric Friction Modifier Providing Low Friction at Higher Temperature. Tribol Lett 69, 65 (2021). https://doi.org/10.1007/s11249-021-01443-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01443-9

Keywords

Navigation