Skip to main content
Log in

Mixed Lubrication with C18 Fatty Acids: Effect of Unsaturation

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this paper, the lubrication mechanism of fatty acids is revisited with a new approach combining experimental and computational chemistry studies. The lubricating properties of single and mixtures of stearic, oleic and linoleic acids in a synthetic Poly-Alpha-Olefin base oil (PAO4) on iron oxide surface are investigated under mixed boundary regime with temperatures from 50 °C up to 150 °C. Low friction coefficient (about 0.055) with no visible wear is reported in the presence of single stearic acid at high temperature. This lubricating behavior is inhibited in the presence of unsaturated fatty acids highlighting an anti-synergic effect of a saturated/unsaturated mixture, especially at 150 °C. To understand the anti-synergic effect and the adsorption mechanism of these molecules, molecular dynamic (MD) and quantum chemistry simulations are performed to evaluate their diffusion coefficient in PAO4 and their adsorption mechanism on iron oxide at different temperatures. MD simulation results show a faster diffusion toward the surface for unsaturated fatty acids than for saturated fatty acid at all the studied temperatures. This means that unsaturated molecules arrive and mainly adsorb before stearic acid on the surface leading to a tribological behavior of the mixture characteristic of the unsaturated molecule. Computational chemistry suggests that all fatty acids (saturated and unsaturated) adsorption mechanism is due to the chemisorption of the carboxylic group on iron oxide surface with no desorption up to 150 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anghel, V., Cann, P.M., Spikes, H.A.: Direct measurement of boundary lubricating films. Tribol. Ser. 32, 459–466 (1996)

    Article  Google Scholar 

  2. Bowden, F.P., Tabor, D.: The friction and lubrication of solids, chapter X, Oxford Classic Texts in the Physical Science (2001)

  3. Lim, M.S., et al.: Adsorption and desorption of stearic self-assembled monolayers on aluminum oxide. Langmuir 23, 2444–2452 (2007)

    Article  Google Scholar 

  4. Fischer, D.A., Hu, Z.S., Hsu, S.M.: Molecular orientation and bonding of monolayer stearic acid on a copper surface prepared in air. Tribol. Lett. 3, 41–45 (1997)

    Article  Google Scholar 

  5. Yea Y.S.: Electrochemical study of the interaction between fatty acid and oxidized copper. Tribol. Int. 30, 423–428 (1997)

    Google Scholar 

  6. Russel, J.A., Campbell, W.E., Burton, R.A., Ku, P.M.: Boundary lubrication behavior of organic films at low temperature. ASLE Trans. 8, 48–58 (1965)

    Article  Google Scholar 

  7. Ratoi, M., Anghel, V., Bonvington, C., Spikes, H.A.: Mechanism of oiliness additives. Tribol. Int. 33, 241–247 (2000)

    Article  Google Scholar 

  8. Jahamir, S., et al.: Chain length effects in boundary lubrication. Wear 102, 331–349 (1985)

    Article  Google Scholar 

  9. Zisman, W.A.: Durability and Wettability Properties of Monomolecular Films on Solids, Friction and Wear, pp. 110–148. Elsevier, Amsterdam (1959)

    Google Scholar 

  10. Lundgren, S.M., et al.: Unsaturated fatty acids in alkane solution: adsorption to steel surfaces. Langmuir 23, 10598–10602 (2007)

    Article  Google Scholar 

  11. Lundgren, S.M., Ruths, M., Danerlöv, K., Persson, K.: Effects of unsaturation on film structure and friction of fatty acids in a model. J. Colloid Interface Sci. 326, 530–536 (2008)

    Article  Google Scholar 

  12. Sahoo, R.R., Biswas, S.K.: Frictional response of fatty acids on steel. J. Colloid Interface Sci. 333, 707–718 (2009)

    Article  Google Scholar 

  13. Campen, S. et al.: On the increase in boundary friction with sliding speed. Tribol. Lett. 48(2), 237–248 (2012)

    Google Scholar 

  14. Simie, R., Kalin, M.: Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments. Appl. Surf. Sci. (2013). doi:10.1016/j.apsusc.2013.06.131

  15. Fox, N.J., Tyrer, B., Stachowiak, G.W.: Boundary lubrication performance of free fatty acids in sunflower oil. Tribol. Lett. 16, 275–281 (2004)

    Article  Google Scholar 

  16. Castro, W., Weller, D.E., Cheenkachorn, K., Perez, J.M.: The effect of chemical structure of basefluids on antiwear effectiveness of additives. Tribol. Int. 38, 321–326 (2005)

    Article  Google Scholar 

  17. Siniawski, M.T., Saniei, N., Adhikari, B., Doezema, L.A.: Tribological degradation of two vegetable-based lubricants at elevated temperatures. J. Synth. Lubr. 24, 101–110 (2007)

    Article  Google Scholar 

  18. Onodera, T., et al.: A computational chemistry study on friction of h-MoS2. Part I. Mechanism of single sheet lubrication. J. Phys. Chem. B 113, 16526–16536 (2009)

    Article  Google Scholar 

  19. Onodera, T., et al.: A computational chemistry study on friction of h-MoS2. Part II. Friction anisotropy. J. Phys. Chem. B 114, 15832–15838 (2010)

    Article  Google Scholar 

  20. Buehler, M.J.: Atomistic Modeling of Materials Failure, pp 38–40. Springer, New York (2008)

  21. Morita, Y., et al.: Development of a new molecular dynamics method for tribochemical reaction and its application to formation dynamics of MoS2 tribofilm. Jpn. J. Appl. Phys. 47(4), 3032–3035 (2008)

    Article  Google Scholar 

  22. Delley, B.J.: From molecules to solids with the Dmol3 approach. J. Chem. Phys. 113, 7756 (2000)

    Article  Google Scholar 

  23. Vosko, S.H., Wilk, L., Nusair, M.: Accurate spin dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200 (1980)

    Article  Google Scholar 

  24. Saunders, M.G., Voth, G.A.: Coarse-graining method for computational biology. Ann. Rev. Biophys. 42, 73–93 (2013)

    Article  Google Scholar 

  25. Woodcock, L.V.: Isothermal molecular dynamics calculations for liquid salts. Chem. Phys. Lett. 10, 257 (1971)

    Article  Google Scholar 

  26. Onodera, T., et al.: Development of a quantum chemical molecular dynamics tribochemical simulator and its application to tribochemical reaction dynamics of lubricant additives. Modell. Simul. Mater. Sci. Eng. 18, 034009 (2010)

    Article  Google Scholar 

  27. Ewald, P.P.: Die berechnung optischer une elektrostatische gitterpotentiale. Ann. Phys. 64, 253–287 (1921)

    Article  Google Scholar 

  28. Carzaferri, G., Forss, L., Kamber, I.: Molecular geometries by the extended Hückel molecular orbital method. J. Phys. Chem. 93, 5366–5371 (1989)

    Article  Google Scholar 

  29. Smits, G.: Measurement of the diffusion coefficient of free fatty acid in groundnut oil by the capillary-cell method. J. Am. Oil Chem. Soc. 53(4), 112–124 (1976)

    Article  Google Scholar 

  30. Mansfield, W.W.: The spontaneous emulsification of mixture of oleic acid and paraffin oil in alkaline solution. Aust. J. Sci. Res. Ser. A Phys. Sci. 5, 331 (1953)

    Google Scholar 

  31. Toshitaka, F. et al.: Diffusion coefficients of linoleic acid methyl ester, Vitamin K3 and indole in mixtures of carbon dioxide and n-hexane at 313.2 K, and 16.0 MPa and 25.0 MPa. Fluid Phase Equilib. 164(1), 117–129 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sophie Loehle or Clotilde Minfray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loehle, S., Matta, C., Minfray, C. et al. Mixed Lubrication with C18 Fatty Acids: Effect of Unsaturation. Tribol Lett 53, 319–328 (2014). https://doi.org/10.1007/s11249-013-0270-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0270-3

Keywords

Navigation