Skip to main content
Log in

In Situ Temperature Measurements of Sliding Surface by Raman Spectroscopy

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In the current study, surface temperature in sliding contacts was in situ measured by Raman spectroscopy. The contact area comprised a stationary sapphire hemisphere and a rotating carbon steel disk. The surface temperature was estimated from the Raman spectrum of sapphire. Three estimation methods of temperature were compared, which were obtained from the peak shift, full width at half maximum (FWHM), and intensity ratio of Stokes/anti-Stokes scattering. The estimated temperature from the peak shift exhibited the least fluctuations among the three methods. However, the peak shift varied with stress and temperature. The estimated temperature from the FWHM was highly accurate, although the fluctuation was greater than that from the peak shift. The estimated temperature from the intensity ratio of Stokes/anti-Stokes scattering was unaffected by pressure and crystallinity, although this estimated temperature exhibited a significant fluctuation because the signal-to-noise ratio of the anti-Stokes scattering was small. This in situ measurement technique using Raman spectroscopy can simultaneously acquire the temperature and chemical state of the sliding surface. Namely, the temperature of a tribofilm and the temperature during scuffing can be measured directly and the mechanism can be analyzed effectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bowden, F.P., Thomas, P.H.: The surface temperature of sliding solids. Proc. R. Soc. Math. Phys. Eng. Sci. 223, 29–40 (1954)

    Google Scholar 

  2. Archard, J.F.: The temperature of rubbing surfaces. Wear 2, 438–455 (1959)

    Article  Google Scholar 

  3. Blok, H.: The flash temperature concept. Wear 6, 483–494 (1963)

    Article  Google Scholar 

  4. Kalin, M.: Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review. Mater. Sci. Eng A 374(1–2), 390–397 (2004). https://doi.org/10.1016/j.msea.2004.03.031

    Article  CAS  Google Scholar 

  5. Yagi, K., Kyogoku, K., Nakahara, T.: Relationship between temperature distribution in EHL film and dimple formation. Trans. ASME 127(3), 658–665 (2005). https://doi.org/10.1115/1.1866164

    Article  Google Scholar 

  6. Yagi, K., Kyogoku, K., Nakahara, T.: Experimental investigation of effects of slip ratio on elastohydrodynamic lubrication film related to temperature distribution in oil films. Proc. Inst. Mech. Eng. 220(4), 353–363 (2006). https://doi.org/10.1243/13506501JET154

    Article  Google Scholar 

  7. Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions in boundary lubrication—The effect of temperature and ZDDP/MoDTC ratio. Tribol. Int. 39(12), 1545–1557 (2006). https://doi.org/10.1016/j.triboint.2006.03.001

    Article  CAS  Google Scholar 

  8. Komaba, M., Kondo, S., Suzuki, A., Kurihara, K., Mori, S.: The effect of temperature on lubrication property with MoDTC-containning lubricant: Temperature dependence of friction coefficient and tribofilm structure. Tribol. Online 13(5), 275–281 (2018). https://doi.org/10.2474/trol.13.275

    Article  Google Scholar 

  9. Hershberger, J., Ajayi, O.O., Zhang, J., Yoon, H., Fenske, G.R.: Formation of austenite during scuffing failure of SAE 4340 steel. Wear 256(1–2), 159–167 (2004). https://doi.org/10.1016/s0043-1648(03)00375-2

    Article  CAS  Google Scholar 

  10. Kajita, S., Yagi, K., Izumi, T., Koyamachi, J., Tohyama, M., Saito, K., Sugimura, J.: In situ X-ray diffraction study of phase transformation of steel in scuffing process. Tribol. Lett. 57, 6 (2015). https://doi.org/10.1007/s11249-014-0443-8

    Article  CAS  Google Scholar 

  11. Yagi, K., Kajita, S., Izumi, T., Koyamachi, J., Tohyama, M., Saito, K., Sugimura, J.: Simultaneous synchrotron X-ray diffraction, near-infrared, and visible in situ observation of scuffing process of steel in sliding contact. Tribol. Lett. 61, 19 (2016). https://doi.org/10.1007/s11249-015-0636-9

    Article  CAS  Google Scholar 

  12. Izumi, T., Yagi, K., Koyamachi, J., Saito, K., Sanda, S., Yamaguchi, S., Ikehata, H., Yogo, Y., Sugimura, J.: Surface deteriorations during scuffing process of steel and analysis of their contribution to wear using in situ synchrotron X-ray diffraction and optical observations. Tribol. Lett. 66, 120 (2018). https://doi.org/10.1007/s11249-018-1062-6

    Article  CAS  Google Scholar 

  13. Kawamoto, M., Okabayashi, K.: Study of dry sliding wear of cast iron as a function of surface temperature. Wear 58, 59–95 (1980)

    Article  CAS  Google Scholar 

  14. Yamamoto, S., Okuaki, T., Egashira, M., Kondoh, K., Masuda, C.: Evaluation of temperature distribution in steel balls induced by friction generated during tribotest against diamond like carbon coatings. Tribology 9(1), 33–40 (2015). https://doi.org/10.1179/1751584x14y.0000000085

    Article  CAS  Google Scholar 

  15. Matsuzaki, Y., Yagi, K., Sugimura, J.: In-situ fast and long observation system for friction surfaces during scuffing of steel. Wear 386–387, 165–172 (2017). https://doi.org/10.1016/j.wear.2017.06.013

    Article  CAS  Google Scholar 

  16. Matsuzaki, Y., Yagi, K., Sugimura, J.: In situ observation of heat generation behaviour on steel surface during scuffing process. Tribol. Lett. 66, 142 (2018). https://doi.org/10.1007/s11249-018-1095-x

    Article  CAS  Google Scholar 

  17. Lingard, S.: Estimation of flash temperatures in dry sliding. Proc. Inst. Mech. Eng. 198C(8), 91–97 (1984)

    Google Scholar 

  18. Enthoven, J., Spikes, H.A.: Infrared and visual study of the mechanisms of scuffing. Tribol. Trans. 39(2), 441–447 (1996). https://doi.org/10.1080/10402009608983550

    Article  CAS  Google Scholar 

  19. Rowe, K.G., Bennett, A.I., Krick, B.A., Gregory Sawyer, W.: In situ thermal measurements of sliding contacts. Tribol. Int. 62, 208–214 (2013). https://doi.org/10.1016/j.triboint.2013.02.028

    Article  CAS  Google Scholar 

  20. Sutter, G., Ranc, N.: Flash temperature measurement during dry friction process at high sliding speed. Wear 268(11–12), 1237–1242 (2010). https://doi.org/10.1016/j.wear.2010.01.019

    Article  CAS  Google Scholar 

  21. Enthoven, J.C., Cann, P.M., Spikes, H.A.: Temperature and scuffing. Tribol. Trans. 36(2), 258–266 (1993). https://doi.org/10.1080/10402009308983157

    Article  CAS  Google Scholar 

  22. Jaeger, J.C.: Moving sources of heat and the temperature at sliding contacts. J. Proc. R. Soc. NSW. 76(3), 203–224 (1942)

    Google Scholar 

  23. Dvorak, S.D., Wahl, K.J., Singer, I.L.: Friction behavior of boric acid and annealed boron carbide coatings studied by in situ Raman tribometry. Tribol. Trans. 45(3), 354–362 (2002). https://doi.org/10.1080/10402000208982560

    Article  CAS  Google Scholar 

  24. Scharf, T.W., Singer, I.L.: Monitoring transfer films and friction instabilities with in situ Raman tribometry. Tribol. Lett. 14(1), 3–8 (2003a). https://doi.org/10.1023/A:1021942830132

    Article  CAS  Google Scholar 

  25. Scharf, T.W., Singer, I.L.: Quantification of the thickness of carbon transfer films using Raman tribometry. Tribol. Lett. 14(2), 137–145 (2003b). https://doi.org/10.1023/A:1021942822261

    Article  CAS  Google Scholar 

  26. Joly-Pottuz, L., Martin, J.M., Belin, M., Dassenoy, F., Montagnac, G., Reynard, B.: Study of inorganic fullerences and carbon nanotubes by in situ Raman tribometry. Appl. Phys. Lett. 91, 153107 (2007). https://doi.org/10.1063/1.2790077

    Article  CAS  Google Scholar 

  27. Yagi, K., Vergne, P., Nakahara, T.: In situ pressure measurements in dimpled elastohydrodynamic sliding contacts by Raman microspectroscopy. Tribol. Int. 42, 724–730 (2009). https://doi.org/10.1016/j.triboint.2008.10.005

    Article  CAS  Google Scholar 

  28. Bongaerts, J.H.H., Day, J.P.R., Marriott, C., Pudney, P.D.A., Williamson, A.M.: In situ confocal Raman spectroscopy of lubricants in a soft elastohydrodynamic tribological contact. J. Appl. Phys. 104(1), 014913 (2008). https://doi.org/10.1063/1.2952054

    Article  CAS  Google Scholar 

  29. Muratore, C., Bultman, J.E., Aouadi, S.M., Voevodin, A.A.: In situ Raman spectroscopy for examination of high temperature tribological processes. Wear 270(3–4), 140–145 (2011). https://doi.org/10.1016/j.wear.2010.07.012

    Article  CAS  Google Scholar 

  30. Miyajima, M., Kitamura, K., Matsumoto, K.: Characterization of tribofilm with the remaining lubricating oil by Raman spectroscopy. Tribol. Online 10(3), 225–231 (2015). https://doi.org/10.2474/trol.10.225

    Article  Google Scholar 

  31. Miyajima, M., Kitamura, K., Matsumoto, K.: In situ Raman tribometry for the formation and removal behavior of FeS2 tribofilm in the scuffing process. Tribol. Online 11(2), 382–388 (2016). https://doi.org/10.2474/trol.11.382

    Article  Google Scholar 

  32. Okubo, H., Sasaki, S.: In situ Raman observation of structural transformation of diamond-like carbon films lubricated with MoDTC solution: mechanism of wear acceleration of DLC films lubricated with MoDTC solution. Tribol. Int. 113, 399–410 (2017). https://doi.org/10.1016/j.triboint.2016.10.009

    Article  CAS  Google Scholar 

  33. Matsumoto, K., Sagara, M., Miyajima, M., Kitamura, K., Amaya, H.: Study of oil country tubular goods casing and liner wear mechanism on corrosion-resistant alloys. SPE Drill. Complet. 33(1), 187946 (2018). https://doi.org/10.2118/187946-PA

    Article  Google Scholar 

  34. Hamaguchi Hiroo, I.K.: Raman spectroscopy (Japanese). (2015)

  35. Sun, Y., Yanagisawa, M., Kunimoto, M., Nakamura, M., Homma, T.: Estimated phase transition and melting temperature of APTES self-assembled monolayer using surface-enhanced anti-stokes and stokes Raman scattering. Appl. Surf. Sci. 363, 572–577 (2016). https://doi.org/10.1016/j.apsusc.2015.12.035

    Article  CAS  Google Scholar 

  36. Sun, Y., Yanagisawa, M., Homma, T.: Thermal stability of single-layer graphene subjected to confocal laser heating investigated by using in situ anti-Stokes and Stokes Raman Spectroscopy. Electrochemistry 85(4), 195–198 (2017). https://doi.org/10.5796/electrochemistry.85.195

    Article  CAS  Google Scholar 

  37. Tsuji, H., Oda, A., Kido, J., Sugiyama, T., Furukawa, Y.: Temperature measurements of organic light-emitting diodes by Stokes and anti-Stokes Raman scattering. Jpn. J. Appl. Phys. 47(4), 2171–2173 (2008). https://doi.org/10.1143/JJAP.47.2171

    Article  CAS  Google Scholar 

  38. Cheong, C.U.A., Stair, P.C.: In situ measurements of lubricant temperature and pressure at a sliding contact. J. Phys. Chem. C 111(30), 11314–11319 (2007)

    Article  CAS  Google Scholar 

  39. Tuschel, D.: Raman thermometry. Spectroscopy 31(12), 8–13 (2016)

    CAS  Google Scholar 

  40. Tian, X., Francis, E., Kennedy, J.: Maximum and average flash temperatures in sliding contacts. J. Tribol. 116(1), 167–174 (1994). https://doi.org/10.1115/1.2927035

    Article  Google Scholar 

  41. Everall, J.N.: Confocal Raman microscopy: performance, pitfalls, and best practice. Appl. Spectrosc. 63(9), 245A-262A (2009). https://doi.org/10.1366/000370209789379196

    Article  CAS  Google Scholar 

  42. Skin depth calculator: https://owenduffy.net/calc/SkinDepth.htm. Accessed 27 Aug 2020

  43. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Oxford University Press, Oxford (1954)

    Google Scholar 

  44. Yanagisawa, M., Saito, M., Kunimoto, M., Homma, T.: Transmission-type plasmonic sensor for surface-enhanced Raman spectroscopy. Appl. Phys. Express (2016). https://doi.org/10.7567/apex.9.122002

    Article  Google Scholar 

  45. Zhang, K., Xu, Z., Rosenkranz, A., Song, Y., Xue, T., Fang, F.: Surface- and tip-enhanced Raman scattering in tribology and lubricant detection-A prospective. Lubricants 7(9), 81 (2019). https://doi.org/10.3390/lubricants7090081

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mr. Nobuhito Maeda of Nippon Steel Corporation for his assistance with the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Miyajima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyajima, M., Kitamura, K., Matsumoto, K. et al. In Situ Temperature Measurements of Sliding Surface by Raman Spectroscopy. Tribol Lett 68, 116 (2020). https://doi.org/10.1007/s11249-020-01356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01356-z

Keywords

Navigation