Skip to main content
Log in

Origin of Ultra-Low Friction of Boric Acid: Role of Vapor Adsorption

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Boric acid is a lamellar solid lubricant that can give an ultra-low friction coefficient. The origin of this ultra-low friction of boric acid was investigated using tribology and spectroscopy techniques in inert, humid, and organic vapor conditions. It was found that boric acid itself experiences high friction and catastrophic surface wear when rubbed with a stainless steel ball in dry nitrogen or oxygen environments, but it gives very low friction (µ = 0.06) in humid and acetone vapor environments. Short-chain alcohol vapors (ethanol and n-pentanol) did not show these ultra-low friction values. Vibrational spectroscopy indicates that the lubricating vapors do not adsorb on the basal plane of the boric acid crystal but likely adsorb onto the edge sites of the lamella. The alcohol molecules impinging from the gas phase readily react with the boric acid to form a high vapor pressure molecule that desorbs from the surface. The “unlocking” of the high-energy edge sites by adsorbed acetone and water vapor appears to be needed for the lamella to shear along the basal plane direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dienwiebel, M., Pradeep, N., Verhoeven, G.S., Zandbergen, H.W., Frenken, J.W.: Model experiments of superlubricity of graphite. Surf. Sci. 576, 197–211 (2005)

    Article  Google Scholar 

  2. Huang, H., Tu, J., Gan, L., Li, C.: An investigation on tribological properties of graphite nanosheets as oil additive. Wear 261, 140–144 (2006)

    Article  Google Scholar 

  3. Gansheimer, J., Holinski, R.: Molybdenum disulfide in oils and greases under boundary conditions. J. Tribol. 95, 242–246 (1973)

    Google Scholar 

  4. Roberts, E.: Ultralow friction films of MoS < sub > 2 </sub > for space applications. Thin Solid Films 181, 461–473 (1989)

    Article  Google Scholar 

  5. Erdemir, A., Fenske, G., Erck, R.: A study of the formation and self-lubrication mechanisms of boric acid films on boric oxide coatings. Surf. Coat. Technol. 43, 588–596 (1990)

    Article  Google Scholar 

  6. Erdemir, A., Bindal, C., Fenske, G.: Formation of ultralow friction surface films on boron carbide. Appl. Phys. Lett. 68, 1637–1639 (1996)

    Article  Google Scholar 

  7. Bindal, C., Erdemir, A.: Ultralow friction behavior of borided steel surfaces after flash annealing. Appl. Phys. Lett. 68, 923–925 (1996)

    Article  Google Scholar 

  8. Erdemir, A., Halter, M., Fenske, G.: Preparation of ultralow-friction surface films on vanadium diboride. Wear 205, 236–239 (1997)

    Article  Google Scholar 

  9. Erdemir, A., Eryilmaz, O., Fenske, G.: Self-replenishing solid lubricant films on boron carbide. Surf. Eng. 15, 291–295 (1999)

    Article  Google Scholar 

  10. Erdemir, A.: Review of engineered tribological interfaces for improved boundary lubrication. Tribol. Int. 38, 249–256 (2005)

    Article  Google Scholar 

  11. Sawyer, W.G., Ziegert, J.C., Schmitz, T.L., Barton, T.: In situ lubrication with boric acid: powder delivery of an environmentally benign solid lubricant. Tribol. Trans. 49, 284–290 (2006)

    Article  Google Scholar 

  12. Deshmukh, P., Lovell, M., Sawyer, W.G., Mobley, A.: On the friction and wear performance of boric acid lubricant combinations in extended duration operations. Wear 260, 1295–1304 (2006)

    Article  Google Scholar 

  13. Shah, F.U., Glavatskih, S., Antzutkin, O.N.: Boron in tribology: from borates to ionic liquids. Tribol. Lett. 51, 281–301 (2013)

    Article  Google Scholar 

  14. Savage, R.H.: Graphite lubrication. J. Appl. Phys. 19, 1–10 (1948)

    Article  Google Scholar 

  15. Savage, R.H., Schaefer, D.: Vapor lubrication of graphite sliding contacts. J. Appl. Phys. 27, 136–138 (1956)

    Article  Google Scholar 

  16. Winer, W.O.: Molybdenum disulfide as a lubricant: a review of the fundamental knowledge. Wear 10, 422–452 (1967)

    Article  Google Scholar 

  17. Donnet, C., Martin, J., Le Mogne, T., Belin, M.: Super-low friction of MoS < sub > 2 </sub > coatings in various environments. Tribol. Int. 29, 123–128 (1996)

    Article  Google Scholar 

  18. Voevodin, A., Zabinski, J.: Supertough wear-resistant coatings with ‘chameleon’surface adaptation. Thin Solid Films 370, 223–231 (2000)

    Article  Google Scholar 

  19. Barthel, A.J., Kim, S.H.: Lubrication by physisorbed molecules in equilibrium with vapor at ambient condition-effects of molecular structure and substrate chemistry. Langmuir 30(22), 6469–6478 (2014)

    Article  Google Scholar 

  20. Barthel, A.J., Al-Azizi, A., Surdyka, N.D., Kim, S.H.: Effects of gas or vapor adsorption on adhesion, friction, and wear of solid interfaces. Langmuir 30, 2977–2992 (2013)

    Article  Google Scholar 

  21. Yen, B.K., Schwickert, B.E., Toney, M.F.: Origin of low-friction behavior in graphite investigated by surface X-ray diffraction. Appl. Phys. Lett. 84, 4702–4704 (2004)

    Article  Google Scholar 

  22. Voevodin, A., Phelps, A., Zabinski, J., Donley, M.: Friction induced phase transformation of pulsed laser deposited diamond-like carbon. Diam. Relat. Mater. 5, 1264–1269 (1996)

    Article  Google Scholar 

  23. Khare, H., Burris, D.: The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide. Tribol. Lett. 52, 485–493 (2013)

    Article  Google Scholar 

  24. Khare, H., Burris, D.: Surface and subsurface contributions of oxidation and moisture to room temperature friction of molybdenum disulfide. Tribol. Lett. 53, 329–336 (2014)

    Article  Google Scholar 

  25. Levita, G., Cavaleiro, A., Molinari, E., Righi, M.C., Polcar, T.: Sliding properties of MoS2 layers: load and interlayer orientation effects. J. Phys. Chem. C 118(25), 13809–13816 (2014)

    Article  Google Scholar 

  26. Onodera, T., Morita, Y., Suzuki, A., Koyama, M., Tsuboi, H., Hatakeyama, N., Endou, A., Takaba, H., Kubo, M., Dassenoy, F.: A computational chemistry study on friction of h-MoS2. Part I. Mechanism of single sheet lubrication. J. Phys. Chem. B 113, 16526–16536 (2009)

    Article  Google Scholar 

  27. Martin, J.-M., Donnet, C., Le Mogne, T., Epicier, T.: Superlubricity of molybdenum disulphide. Phys. Rev. B 48, 10583 (1993)

    Article  Google Scholar 

  28. Ma, X., Unertl, W., Erdemir, A.: The boron oxide–boric acid system: nanoscale mechanical and wear properties. J. Mater. Res. 14, 3455–3466 (1999)

    Article  Google Scholar 

  29. Barthel, A., Gregory, M., Kim, S.: Humidity effects on friction and wear between dissimilar metals. Tribol. Lett. 48, 305–313 (2012)

    Article  Google Scholar 

  30. Barnette, A.L., Bradley, L.C., Veres, B.D., Schreiner, E.P., Park, Y.B., Park, J., Park, S., Kim, S.H.: Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12, 2434–2439 (2011)

    Article  Google Scholar 

  31. Lee, C.M., Mohamed, N.M., Watts, H.D., Kubicki, J.D., Kim, S.H.: Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J. Phys. Chem. B 117, 6681–6692 (2013)

    Article  Google Scholar 

  32. Zachariasen, W.: The crystal lattice of boric acid, BO3H3. Zeitschrift für Kristallographie-Crys. Mater. 88, 150–161 (1934)

    Google Scholar 

  33. Cowley, J.: Structure analysis of single crystals by electron diffraction. II. Disordered boric acid structure. Acta Crystallogr. A 6, 522–529 (1953)

    Article  Google Scholar 

  34. Dowson, D.: History of Tribology. Longman, London (1979)

    Google Scholar 

  35. Anderson, S., Bohon, R.L., Kimpton, D.D.: Infrared spectra and atomic arrangement in fused boron oxide and soda borate glasses. J. Am. Ceram. Soc. 38, 370–377 (1955)

    Article  Google Scholar 

  36. Bethell, D., Sheppard, N.: The infra-red spectrum and structure of boric acid. Trans. Faraday Soc. 51, 9–15 (1955)

    Article  Google Scholar 

  37. Hornig, D.F., Plumb, R.: Vibrational spectra of molecules and complex ions in crystals. IX. Boric Acid. J. Chem. Phys. 26, 637–641 (1957)

    Article  Google Scholar 

  38. Servoss, R., Clark, H.: Vibrational spectra of normal and isotopically labeled boric acid. J. Chem. Phys. 26, 1175–1178 (1957)

    Article  Google Scholar 

  39. Krishnan, K. In: The Raman spectrum of boric acid, Proceedings of the Indian Academy of Sciences-Section A, 1963; Springer, pp 103–108 (1963)

  40. Greenler, R.G.: Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J. Chem. Phys. 44, 310 (1966)

    Article  Google Scholar 

  41. Greenler, R.G.: Reflection method for obtaining the infrared spectrum of a thin layer on a metal surface. J. Chem. Phys. 50, 1963 (1969)

    Article  Google Scholar 

  42. Broadhead, P., Newman, G.: The vibrational spectra of orthoboric acid and its thermal decomposition products. J. Mol. Struct. 10, 157–172 (1971)

    Article  Google Scholar 

  43. Broadhead, P., Newman, G.: OH groups and hydrogen bonding in some boron-oxygen compounds. Spectrochim. Acta A 28, 1915–1923 (1972)

    Article  Google Scholar 

  44. Parsons, J., Milberg, M.: Vibrational spectra of vitreous B2O3·xH2O. J. Am. Ceram. Soc. 43, 326–330 (1960)

    Article  Google Scholar 

  45. Ewing, G.E.: Thin film water. J. Phys. Chem. B 108, 15953–15961 (2004)

    Article  Google Scholar 

  46. Asay, D.B., Kim, S.H.: Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B 109, 16760–16763 (2005)

    Article  Google Scholar 

  47. Zhang, S., Zhao, D.: Aerospace Materials Handbook. CRC Press, Boca Raton (2012)

    Google Scholar 

  48. Bradley, L.C., Dilworth, Z.R., Barnette, A.L., Hsiao, E., Barthel, A.J., Pantano, C.G., Kim, S.H.: Hydronium ions in soda-lime silicate glass surfaces. J. Am. Ceram. Soc. 96, 458–463 (2013)

    Google Scholar 

  49. Pimentel, G.C.: McClella.Al: hydrogen bonding. Annu. Rev. Phys. Chem. 22, 347 (1971)

    Article  Google Scholar 

  50. Domi, Y., Ochida, M., Tsubouchi, S., Nakagawa, H., Yamanaka, T., Doi, T., Abe, T., Ogumi, Z.: In situ AFM study of surface film formation on the edge plane of hopg for lithium-ion batteries. J. Phys. Chem. C 115, 25484–25489 (2011)

    Article  Google Scholar 

  51. Yuan, W., Zhou, Y., Li, Y., Li, C., Peng, H., Zhang, J., Liu, Z., Dai, L., Shi, G.: The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 3, 2248 (2013). doi:10.1038/srep02248

    Google Scholar 

  52. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  Google Scholar 

  53. Ong, T.S., Yang, H.: Effect of atmosphere on the mechanical milling of natural graphite. Carbon 38, 2077–2085 (2000)

    Article  Google Scholar 

  54. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nano. 6, 147–150 (2011)

    Article  Google Scholar 

  55. Hao, G., Huang, Z., Liu, Y., Qi, X., Ren, L., Peng, X., Yang, L., Wei, X., Zhong, J.: Electrostatic properties of few-layer MoS2 films. AIP Adv. 3(4), 042125 (2013)

    Article  Google Scholar 

  56. Shi, Y., Huang, J.-K., Jin, L., Hsu, Y.-T., Yu, S. F., Li, L.-J., Yang, H. Y.: Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals. Sci. Rep. 3, 1839 (2013). doi:10.1038/srep01839

    Google Scholar 

  57. Zhao, X., Perry, S.S.: The role of water in modifying friction within MoS2 sliding interfaces. ACS Appl. Mater. Interfaces 2, 1444–1448 (2010)

    Article  Google Scholar 

  58. Peak, D., Luther III, G.W., Sparks, D.L.: ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochim. Cosmochim. Acta 67, 2551–2560 (2003)

    Article  Google Scholar 

  59. Coblentz Society Inc., Evaluated Infrared Reference Spectra in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. Linstrom, P.J., and Mallard, W.G., National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov, (retrieved November 20, 2014)

Download references

Acknowledgments

This work was financially supported by the National Science Foundation (Grant Nos. CMMI-1000021 and 1131128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong H. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barthel, A.J., Luo, J. & Kim, S.H. Origin of Ultra-Low Friction of Boric Acid: Role of Vapor Adsorption. Tribol Lett 58, 40 (2015). https://doi.org/10.1007/s11249-015-0512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0512-7

Keywords

Navigation