Skip to main content
Log in

Effects of Interfacial Bonding on Friction and Wear at Silica/Silica Interfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Static friction between amorphous silica surfaces with a varying number of interfacial siloxane (Si–O–Si) bridges was studied using molecular dynamic simulations. Static friction was found to increase linearly with the applied normal pressure, which can be explained in the framework of Prandlt–Tomlinson’s model. Friction force was found to increase with concentration of siloxane bridges, but with a decreasing gradient, with the latter being due to interactions between neighboring siloxane bridges. In addition, we identified atomic-level wear mechanisms of silica. These mechanisms include both transfer of individual atoms accompanied by breaking interfacial siloxane bridges and transfer of atomic cluster initialized by rupturing of surface Si–O bonds. Our simulations showed that small clusters are continually formed and dissolved at the sliding interface, which plays an important role in wear at silica/silica interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lasky, J.B.: Wafer bonding for silicon-on-insulator technologies. Appl. Phys. Lett. 48, 78–80 (1985)

    Article  Google Scholar 

  2. Ventosa, C., Rieutord, F., Libralesso, L., Morales, C., Fournel, F., Moriceau, H.: Hydrophilic low-temperature direct wafer bonding. J. Appl. Phys. (2008). doi:10.1063/1.3040701

  3. Taran, E., Donose, E., Vakarelski, I.U., Higashitani, K.: pH dependence of friction forces between silica surfaces in solutions. J. Colloid Interface Sci. 297, 199–203 (2006)

    Article  Google Scholar 

  4. Scholz, C.: Earthquakes and friction laws. Nature 391, 37–42 (1998)

    Article  Google Scholar 

  5. Li, Q., Tullis, T.E., Goldsby, D., Carpick, R.W.: Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480, 233–236 (2011)

    Article  Google Scholar 

  6. Chandross, M., Webb III, E.B., Stevens, M.J., Grest, G.S.: Systematic study of the effect of disorder on nanotribology of self-assembled monolayers. Phys. Rev. Lett. (2004). doi:10.1103/PhysRevLett.93.166103

    Google Scholar 

  7. Chandross, M., Lorenz, C.D., Stevens, M.J., Grest, G.S.: Simulations of nanotribology with realistic probe tip models. Langmuir 24, 1240–1246 (2008)

    Article  Google Scholar 

  8. Toro, G.D., Goldsby, D.L., Tullis, T.E.: Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature 427, 436–439 (2004)

    Article  Google Scholar 

  9. Xu, J., Kato, K.: Formation of tribochemical layer of ceramics sliding in water and its role for low friction. Wear 245, 61–75 (2000)

    Article  Google Scholar 

  10. Heim, L., Blum, J., Preuss, M., Butt, H.: Adhesion and friction forces between spherical micrometer-sized particles. Phys. Rev. Lett. 16, 3328–3331 (1999)

    Article  Google Scholar 

  11. Chen, J., Ratera, I., Park, J., Salmeron, M.: Velocity dependence of friction and hydrogen bonding effects (2006). doi:10.1103/PhysRevLett.96.236102

    Google Scholar 

  12. Subhalakshmi, K., Devaprakasam, D., Math, S., Biswas, S.K.: Use of Eyring equation to explore the frictional responses of a –CF3 and a –CH3 terminated monolayers self-assembled on silicon substrate. Tribol. Lett. 32, 1–11 (2008)

    Article  Google Scholar 

  13. Taran, E., Kanda, Y., Vakarelski, I.U., Higashitani, K.: Nonlinear friction characteristics between silica surfaces in high pH solution. J. Colloid Interface Sci. 307, 425–432 (2007)

    Article  Google Scholar 

  14. Zhuravlev, L.T.: The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. Physicochem. Eng. Asp. 173, 1–38 (2000)

    Article  Google Scholar 

  15. Plößl, A., Kräuter, G.: Wafer direct bonding: tailoring adhesion between brittle materials. Mater. Sci. Eng. R 25, 1–88 (1999)

    Article  Google Scholar 

  16. Vigil, G., Xu, Z., Steinberg, S., Israelachvili, J.: Interactions of silica surfaces. J. Colloid Interface Sci. (1994). doi:10.1006/jcis.1994.1242

    Google Scholar 

  17. Riedo, E., Lévy, F., Brune, H.: Kinetics of capillary condensation in nanoscopic sliding friction. Phys. Rev. Lett. (2002). doi:10.1103/PhysRevLett.88.185505

    Google Scholar 

  18. Szoszkiewicz, R. Riedo, E.: Nucleation time of nanoscale water bridges. Phys. Rev. Lett. (2005). doi:10.1103/PhysRevLett.95.135502

  19. Adler, J.J., Rabinovich, Y.I., Moudgil, B.M.: Origins of the non-DLVO force between glass surfaces in aqueous solution. J. Colloid Interface Sci. 237, 249–258 (2001)

    Article  Google Scholar 

  20. Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181–185 (2010)

    Article  Google Scholar 

  21. Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)

    Article  Google Scholar 

  22. Bocquet, L., Charlaix, E., Ciliberto, S., Crassous, J.: Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 396, 735–737 (1998)

    Article  Google Scholar 

  23. Dieterich, J.H.: Time-dependent friction in rocks. J. Geophys. Res. 77, 3690–3697 (1972)

    Article  Google Scholar 

  24. Ruina, A.: Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983)

    Article  Google Scholar 

  25. Dieterich, J.: Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168 (1979)

    Article  Google Scholar 

  26. Capozza, R., Barel, I., Urbakh, M.: Probing and tuning frictional aging at the nanoscale. Sci. Rep. (2013). doi:10.1038/srep01896

    Google Scholar 

  27. Beeler, N.M.: Review of the physical basis of laboratory-derived relations for brittle failure and their implications for earthquake occurrence and earthquake nucleation. Pure Appl. Geophys. 161, 1853–1876 (2004)

    Article  Google Scholar 

  28. Nakatani, M., Scholz, C.: Frictional healing of quartz gouge under hydrothermal conditions: 2. Quantitative interpretation with a physical model. J. Geophys. Res. (2004). doi:10.1029/2003JB002938

    Google Scholar 

  29. Rice, J.R., Lapusta, N., Ranjith, K.: Rate and state dependent friction and the stability of sliding between elastically deformable solids. J. Mech. Phys. Solids 49, 1865–1898 (2001)

    Article  Google Scholar 

  30. Liu, Y., Szlufarska, I.: Chemical origins of frictional aging. Phys. Rev. Lett. (2012). doi:10.1103/PhysRevLett.109.186102

  31. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

    Article  Google Scholar 

  32. Mo, Y., Turner, K.T., Szlufarska, I.: Origin of the isotope effect on solid friction. Phys. Rev. B (2009). doi:10.1103/PhysRevB.80.155438

  33. Fogarty, J.C., Aktulga, H.M., Grama, A.Y., van Duin, A.C.T., Pandit, S.A.: A reactive molecular dynamics simulation of the silica-water interface. J. Chem. Phys. (2010). doi:10.1063/1.3407433

    Google Scholar 

  34. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. (1995). doi:10.1006/jcph.1995.1039

    Google Scholar 

  35. Hölscher, H., Schirmeisen, A., Schwarz, U.D.: Principles of atomic friction: from sticking atoms to superlubric sliding. Philos. Trans. A Math. Phys. Eng. Sci. 366, 1383–1404 (2008)

    Article  Google Scholar 

  36. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. (2004). doi:10.1103/PhysRevLett.92.134301

  37. Evans, M., Polanyi, M.: Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935)

    Article  Google Scholar 

  38. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. (2003). doi:10.1103/PhysRevLett.91.084502

    Google Scholar 

  39. Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe, T.: Monte Carlo simulations for Tomlinson sliding models for non-sinusoidal periodic potentials. Tribol. Lett. 39, 177–180 (2010)

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge helpful discussions with Professor Robert Carpick, Professor Terry Tullis, Dr. David Goldsby, and Professor Qunyang Li. This work is supported by NSF Grant No. EAR-0910779 and the Army Research Office Grant No. W911NF-12-1-0548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Szlufarska.

Additional information

Ao Li and Yun Liu have contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Liu, Y. & Szlufarska, I. Effects of Interfacial Bonding on Friction and Wear at Silica/Silica Interfaces. Tribol Lett 56, 481–490 (2014). https://doi.org/10.1007/s11249-014-0425-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0425-x

Keywords

Navigation