Skip to main content
Log in

Partial Incorporation of La3+ in Beta Zeolite for Isobutane/1-Butene Alkylation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The incorporation of La3+ cations in different degrees in beta zeolite (Si/Al = 12.5) was studied in order to improve the selectivity and stability of the catalysts for the alkylation of isobutane with butenes in gas phase to obtain trimethylpentanes (TMPs). La/Al ratios between 0.04 and 0.20 were achieved, representing between 10 and 60 percent of the available exchange sites. The different amounts of lanthanum incorporated led to different quantities, strength and nature of acid sites, without extensive detriment to the structural properties. For a molar La/Al ratio of approximately 0.16, a catalyst with a suitable proportion of strong Brønsted sites was obtained, which favored hydride transfer and cracking reactions, thus allowing a faster desorption of TMPs and avoiding polymerization and multiple alkylation. As a result, deactivation by coke deposition was decelerated. Higher La/Al ratios led to lower acid strength and higher proportion of Lewis sites, which promoted polymerization, while lower ratios led to stronger sites which gave place to excessive cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Feller A, Lercher JA (2004) Chemistry and technology of isobutane/alkene alkylation catalyzed by liquid and solid acids. Adv Catal 48:229–295. https://doi.org/10.1016/S0360-0564(04)48003-1

    Article  CAS  Google Scholar 

  2. Zhang S, Wilkinson L, Ogunde L, Todd R, Steves C, Haydel S (Norton Engineering). Alkylation Technology Study FINAL REPORT for South Coast Air Quality Management District (SCAQMD). California, USA, September 9, 2016. Available at https://www.aqmd.gov/docs/default-source/permitting/alkylation-technology-study-final-report.pdf

  3. Albright LF (2010) Alkylation-Industrial. In: Howath IT (ed) Encyclopedia of Catalysis. Wiley, Hoboken, pp 226–281

    Google Scholar 

  4. CB&I’s Advanced Alkylation Technologies: CDAlky® and AlkyClean®. SCAQMD Working Group Meeting Diamond Bar, California, August 2, 2017. Available at: http://www.aqmd.gov/docs/default-source/rule-book/Proposed-Rules/1410/cb-i-presAug2017.pdf

  5. Chauvin Y, Hirschauer A, Olivier H (1994) Alkylation of isobutane with 2-butene using 1-butyl-3-methylimidazolium chloride—aluminium chloride molten salts as catalysts. J Mol Catal 92:155–165. https://doi.org/10.1016/0304-5102(94)00065-4

    Article  CAS  Google Scholar 

  6. Velazquez HD, Likhanova N, Aljammal N et al (2020) New insights into the progress on the isobutane/butene alkylation reaction and related processes for high-quality fuel production A critical review. Energy Fuels 34:15525–15556. https://doi.org/10.1021/acs.energyfuels.0c02962

    Article  CAS  Google Scholar 

  7. Wang H, Meng X, Zhao G, Zhang S (2017) Isobutane/butene alkylation catalyzed by ionic liquids: a more sustainable process for clean oil production. Green Chem 19:1462–1489. https://doi.org/10.1039/c6gc02791a

    Article  CAS  Google Scholar 

  8. Singhal S, Agarwal S, Singh M et al (2019) Ionic liquids: green catalysts for alkene-isoalkane alkylation. J Mol Liq 285:299–313. https://doi.org/10.1016/J.MOLLIQ.2019.03.145

    Article  CAS  Google Scholar 

  9. Gan P, Tang S (2016) Research progress in ionic liquids catalyzed isobutane/butene alkylation. Chinese J Chem Eng 24:1497–1504. https://doi.org/10.1016/j.cjche.2016.03.005

    Article  CAS  Google Scholar 

  10. Weitkamp J (1980) Isobutane/butene alkylation on cerium exchanged X and Y zeolites. Stud Surf Sci Catal 5:65–75. https://doi.org/10.1016/S0167-2991(08)64866-1

    Article  CAS  Google Scholar 

  11. Corma A, Martínez A, Martínez C (1994) Isobutane/2-butene alkylation on ultrastable Y zeolites: influence of zeolite unit cell size. J Catal 146:185–192. https://doi.org/10.1016/0021-9517(94)90021-3

    Article  CAS  Google Scholar 

  12. Okuhara T, Nishimura T, Watanabe H et al (1994) 4.8 Novel catalysis of cesium salt of heteropoly acid and its characterization by solid-state NMR. Stud Surf Sci Catal 90:419–428. https://doi.org/10.1016/S0167-2991(08)61853-4

    Article  CAS  Google Scholar 

  13. Essayem N, Kieger S, Coudurier G, Védrine JC (1996) Comparison of the reactivities of H3PW12O40 and H4SiW12O40 and their K+, NH4+ and Cs+ salts in liquid phase isobutane/butene alkylation. Stud Surf Sci Catal 101:591–600. https://doi.org/10.1016/S0167-2991(96)80270-9

    Article  CAS  Google Scholar 

  14. Guo C, Liao S, Qian Z, Tanabe K (1994) Alkylation of isobutane with butenes over solid acid catalysts. Appl Catal A Gen 107:239–248. https://doi.org/10.1016/0926-860X(94)85158-1

    Article  CAS  Google Scholar 

  15. Corma A, Juan-Rajadell MI, López-Nieto JM et al (1994) A comparative study of O42- /ZrO2 and zeolite beta as catalysts for the isomerization of n-butane and the alkylation of isobutane with 2-butene. Appl Catal A Gen 111:175–189. https://doi.org/10.1016/0926-860X(94)85050-X

    Article  CAS  Google Scholar 

  16. Flego C, Galasso L, Kiricsi I, Clerici MG (1994) TG-DSC, UV-VIS-IR studies on catalysts deactivated in alkylation of isobutane with 1-butene. Stud Surf Sci Catal 88:585–590. https://doi.org/10.1016/S0167-2991(08)62792-5

    Article  CAS  Google Scholar 

  17. Stöcker M, Mostad H (1994) Rørvik T (1994) Isobutane/2-butene alkylation on faujasite-type zeolites (H EMT and H FAU). Catal Lett 282(28):203–209. https://doi.org/10.1007/BF00806049

    Article  Google Scholar 

  18. Rørvik T, Mostad H, Ellestad OH, Stöcker M (1996) Isobutane/2-butene alkylation over faujasite type zeolites in a slurry reactor. Effect of operating conditions and catalyst regeneration. Appl Catal A Gen 137:235–253. https://doi.org/10.1016/0926-860X(95)00282-0

    Article  Google Scholar 

  19. Simpson M, Wei J, Sundaresan S (1996) Kinetics of zeolitic solid acid-catalyzed alkylation of isobutane with 2-butene. ACS Symp Ser 626:105–115. https://doi.org/10.1021/BK-1996-0626.CH009

    Article  CAS  Google Scholar 

  20. De Jong KP, Mesters CMAM, Peferoen DGR et al (1996) Paraffin alkylation using zeolite catalysts in a slurry reactor: chemical engineering principles to extend catalyst lifetime. Chem Eng Sci 51:2053–2060. https://doi.org/10.1016/0009-2509(96)00062-0

    Article  Google Scholar 

  21. Sekine Y, Ichikawa Y, Tajima Y et al (2012) Alkylation of isobutane by 1-butene over H-beta zeolite in CSTR (Part 1) effects of zeolite-structures and synthesis methods on alkylation performance. J Japan Pet Inst 55:299–307. https://doi.org/10.1627/jpi.55.299

    Article  CAS  Google Scholar 

  22. Unverricht S, Ernst S, Weitkamp J (1994) Iso-butane/1-butene alkylation on zeolites beta and MCM-22. Stud Surf Sci Catal 84:1693–1700. https://doi.org/10.1016/S0167-2991(08)63721-0

    Article  CAS  Google Scholar 

  23. Corma A, Gómez V, Martínez A (1994) Zeolite beta as a catalyst for alkylation of isobutane with 2-butene. Influence of synthesis conditions and process variables. Appl Catal A Gen 119:83–96. https://doi.org/10.1016/0926-860X(94)85026-7

    Article  CAS  Google Scholar 

  24. Kato Y, Fujioka S, Nakabayashi K et al (2013) Alkylation of isobutane by 1-butene over H-beta zeolite in CSTR (Part 3) effect of property of h-beta zeolite. J Japan Pet Inst 56:349–355. https://doi.org/10.1627/jpi.56.349

    Article  CAS  Google Scholar 

  25. Corma A, Martinez A, Martinez C (1994) Isobutane/2-butene alkylation on MCM-22 catalyst. Influence of zeolite structure and acidity on activity and selectivity. Catal Lett 28:187–201. https://doi.org/10.1007/BF00806048

    Article  CAS  Google Scholar 

  26. Chu YF, Chester AW (1986) Reactions of isobutane with butene over zeolite catalysts. Zeolites 6:195–200. https://doi.org/10.1016/0144-2449(86)90047-3

    Article  CAS  Google Scholar 

  27. Weitkamp J, Jacobs PA (1993) Isobutane/1-butene alkylation on pentasil-type zeolite catalysts. Stud Surf Sci Catal 75:1735–1738. https://doi.org/10.1016/S0167-2991(08)64522-X

    Article  CAS  Google Scholar 

  28. Corma A, Martínez A (1993) Chemistry, catalysts, and processes for isoparaffin-olefin alkylation: actual situation and future trends. Catal Rev 35:483–570. https://doi.org/10.1080/01614949308013916

    Article  CAS  Google Scholar 

  29. Trombetta M, Busca G, Rossini S et al (1997) FT-IR studies on light olefin skeletal isomerization catalysis. J Catal 168:349–363. https://doi.org/10.1006/jcat.1997.1643

    Article  CAS  Google Scholar 

  30. Nivarthy GS, He Y, Seshan K, Lercher JA (1998) Elementary mechanistic steps and the influence of process variables in isobutane alkylation over H-BEA. J Catal 176:192–203. https://doi.org/10.1006/jcat.1998.2023

    Article  CAS  Google Scholar 

  31. Kondo JN, Yoda E, Hara M et al (2000) Unusual isomerization routes of n-butenes on the acidic OH (OD) groups on ferrierite zeolite studied by FT-IR. Stud Surf Sci Catal 130:2933–2938. https://doi.org/10.1016/S0167-2991(00)80917-9

    Article  Google Scholar 

  32. Ward J (1968) The nature of active sites on zeolites III. The alkali and alkaline earth ion-exchanged forms. J Catal 10:34–46. https://doi.org/10.1016/0021-9517(68)90220-0

    Article  CAS  Google Scholar 

  33. Ward J (1969) The nature of active sites on zeolites VIII rare earth Y zeolite. J Catal 13:321–327. https://doi.org/10.1016/0021-9517(69)90407-2

    Article  Google Scholar 

  34. Ward J (1969) The nature of active sites on zeolites X. The acidity and catalytic activity of X zeolites. J Catal 14:365–378. https://doi.org/10.1016/0021-9517(69)90327-3

    Article  CAS  Google Scholar 

  35. de la Puente G, Souza-Aguiar EF, Zanon Zotin FM et al (2000) Influence of different rare earth ions on hydrogen transfer over Y zeolite. Appl Catal A Gen 197:41–46. https://doi.org/10.1016/S0926-860X(99)00531-1

    Article  Google Scholar 

  36. Thakur R, Gupta RK, Barman S (2017) A comparative study of catalytic performance of rare earth metal-modified beta zeolites for synthesis of cymene. Chem Pap 71:137–148. https://doi.org/10.1007/s11696-016-0071-x

    Article  CAS  Google Scholar 

  37. Rizkalla EN, Choppin GR (1994) Chapter 127 Lanthanides and actinides hydration and hydrolysis. Handb Phys Chem Rare Earths 18:529–558. https://doi.org/10.1016/S0168-1273(05)80050-9

    Article  Google Scholar 

  38. Guzman A, Zuazo I, Feller A et al (2005) On the formation of the acid sites in lanthanum exchanged X zeolites used for isobutane/cis-2-butene alkylation. Microporous Mesoporous Mater 83:309–318. https://doi.org/10.1016/j.micromeso.2005.04.024

    Article  CAS  Google Scholar 

  39. Klein H, Fuess H, Hunger M (1995) Cation location and migration in lanthanum-exchanged zeolite NaY studied by X-ray powder diffraction and MAS NMR spectroscopy. J Chem Soc Faraday Trans 91:1813. https://doi.org/10.1039/ft9959101813

    Article  CAS  Google Scholar 

  40. van Bokhoven JA, Roest AL, Koningsberger DC et al (2000) Changes in structural and electronic properties of the zeolite framework induced by extraframework Al and La in H-USY and La( x )NaY: A 29 Si and 27 Al MAS NMR and 27 Al MQ MAS NMR Study. J Phys Chem B 104:6743–6754. https://doi.org/10.1021/jp000147c

    Article  CAS  Google Scholar 

  41. Sievers C, Onda A, Guzman A et al (2007) Low-temperature activation of branched octane isomers over lanthanum-exchanged zeolite X catalysts. J Phys Chem C 111:210–218. https://doi.org/10.1021/jp063487s

    Article  CAS  Google Scholar 

  42. Carvajal R, Chu P-J, Lunsford JH (1990) The role of polyvalent cations in developing strong acidity: a study of lanthanum-exchanged zeolites. J Catal 125:123–131. https://doi.org/10.1016/0021-9517(90)90083-V

    Article  CAS  Google Scholar 

  43. Martins A, Silva JM, Henriques C et al (2005) Influence of rare earth elements La, Nd and Yb on the acidity of H-MCM-22 and H-Beta zeolites. Catal Today 107–108:663–670. https://doi.org/10.1016/j.cattod.2005.07.048

    Article  CAS  Google Scholar 

  44. Huang J, Jiang Y, Reddy Marthala VR et al (2007) Concentration and acid strength of hydroxyl groups in zeolites La, Na-X and La, Na-Y with different lanthanum exchange degrees studied by solid-state NMR spectroscopy. Microporous Mesoporous Mater 104:129–136. https://doi.org/10.1016/j.micromeso.2007.01.016

    Article  CAS  Google Scholar 

  45. Gaare K, Akporiaye D (1996) Modified zeolites as catalysts in the friedel-crafts acylation. J Mol Catal A Chem 109:177–187. https://doi.org/10.1016/1381-1169(96)00023-4

    Article  CAS  Google Scholar 

  46. Querini CA, Roa E (1997) Deactivation of solid acid catalysts during isobutane alkylation with C4 olefins. Appl Catal A Gen 163:199–215. https://doi.org/10.1016/S0926-860X(97)00144-0

    Article  CAS  Google Scholar 

  47. Feller A, Guzman A, Zuazo I, Lercher JA (2004) On the mechanism of catalyzed isobutane/butene alkylation by zeolites. J Catal 224:80–93. https://doi.org/10.1016/j.jcat.2004.02.019

    Article  CAS  Google Scholar 

  48. Sievers C, Liebert JS, Stratmann MM et al (2008) Comparison of zeolites LaX and LaY as catalysts for isobutane/2-butene alkylation. Appl Catal A Gen 336:89–100. https://doi.org/10.1016/j.apcata.2007.09.039

    Article  CAS  Google Scholar 

  49. Nivarthy GS, Seshan K, Lercher JA (1998) The influence of acidity on zeolite H-BEA catalyzed isobutane/n-butene alkylation. Microporous Mesoporous Mater 22:379–388. https://doi.org/10.1016/S1387-1811(98)00092-4

    Article  CAS  Google Scholar 

  50. Dalla Costa BO, Querini CA (2010) Isobutane alkylation with butenes in gas phase. Chem Eng J 162:829–835. https://doi.org/10.1016/j.cej.2010.06.038

    Article  CAS  Google Scholar 

  51. Dalla Costa BO, Peralta MA, Querini CA (2014) Gas phase dehydration of glycerol over, lanthanum-modified beta-zeolite. Appl Catal A Gen 472:53–63. https://doi.org/10.1016/j.apcata.2013.12.011

    Article  CAS  Google Scholar 

  52. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  53. Lippens B (1965) Studies on pore systems in catalysts V The t method. J Catal 4:319–323. https://doi.org/10.1016/0021-9517(65)90307-6

    Article  CAS  Google Scholar 

  54. Broekhoff JCP, De Boer JH (1967) Studies on pore systems in catalysts IX. Calculation of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores A Fundamental equations. J Catal 9:8–14. https://doi.org/10.1016/0021-9517(67)90174-1

    Article  CAS  Google Scholar 

  55. Fung S, Querini C (1992) A highly sensitive detection method for temperature programmed oxidation of coke deposits: methanation of C02 in the presence of 02. J Catal 138:240–254. https://doi.org/10.1016/0021-9517(92)90020-I

    Article  CAS  Google Scholar 

  56. Kováts E (1958) Gas-chromatographische charakterisierung organischer verbindungen. teil 1: retentionsindices aliphatischer halogenide, alkohole aldehyde und ketone. Helv Chim Acta 41:1915–1932. https://doi.org/10.1002/hlca.19580410703

    Article  Google Scholar 

  57. Dietz WA (1967) Response factors for gas chromatographic analyses. J Chromatogr Sci 5:68–71. https://doi.org/10.1093/chromsci/5.2.68

    Article  CAS  Google Scholar 

  58. Xu P, Lu J, Aydin C et al (2015) Imaging individual lanthanum atoms in zeolite y by scanning transmission electron microscopy: Evidence of lanthanum pair sites. Microporous Mesoporous Mater 213:95–99. https://doi.org/10.1016/j.micromeso.2015.04.008

    Article  CAS  Google Scholar 

  59. Basila MR, Kantner TR, Rhee KH (1964) The nature of the acidic sites on a silica-alumina. Characterization by infrared spectroscopic studies of trimethylamine and pyridine chemisorption. J Phys Chem 68:3197–3207. https://doi.org/10.1021/j100793a020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the financial support by Agencia Nacional de Promoción Científica y Técnica (PICT 2018-3634), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2017-469), and Universidad Nacional del Litoral (CAID 2016 654 50420150100046LI and CAID 2020 50620190100153LI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas G. Tonutti.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 829 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonutti, L.G., Maquirriain, M.A., Querini, C.A. et al. Partial Incorporation of La3+ in Beta Zeolite for Isobutane/1-Butene Alkylation. Top Catal 65, 1301–1316 (2022). https://doi.org/10.1007/s11244-022-01665-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01665-8

Keywords

Navigation