Skip to main content
Log in

A comparative study of catalytic performance of rare earth metal-modified beta zeolites for synthesis of cymene

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A series of zeolite (LaB, CeB, and PrB) containing rare earth metals lanthanum (La), cerium (Ce), and praseodymium (Pr) were used for transalkylation reaction. The modified beta zeolites were characterized by EDS, XRD, BET, FTIR, and TPD. The surface area and acidities of the zeolite samples modified with various rare earth metals are considerably different. The effect of various process parameters like metal loading (2–10 wt%), catalyst loading (1.44–8.63 w/w%), temperature (448–573 K), reactant ratio 1–15, and space time (3.2–9.29 kg h/kmol) on the conversion of reactant and selectivity of product was studied. Catalytic performance of praseodymium-modified beta zeolite shows highest cumene conversion (86.4 wt%) and cymene selectivity (65.7 wt%) compared to other zeolites. The maximum cumene conversion and cymene selectivity were obtained at 523 K, toluene-to-cumene ratio of 9:1, and a space time of 9.29 kg h/kmol. Kinetic modeling of the reaction was done to estimate the reaction kinetic constants and adsorption constants. The activation energy of the transalkylation was found to be 61.44 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Ce:

Cerium

CeB:

Cerium-modified beta zeolite

DIPT:

Diisopropyltoluene

Hbeta:

Beta zeolite

k1, k2, k3 :

Kinetic constant, kgmol/kg h

Kc:

Adsorption constant for cumene, atm−1

K t :

Adsorption constant for tolene, atm−1

La:

Lanthanum

LaB:

Lanthanum-modified beta zeolite

P :

Total pressure, atm

\(p_{\text{A}}\) :

Partial pressure of aliphatics, atm

\(p_{\text{ben}}\) :

Partial pressure of benzene, atm

P cum :

Partial pressure of cumene, atm

\(p_{\text{cymene}}\) :

Partial pressure of cymene, atm

\(p_{\text{DIPT}}\) :

Partial pressure of DIPT, atm

Pr:

Praseodymium

PrB:

Praseodymium modified beta zeolite

\(p_{xyl}\) :

Partial pressure of xylene, atm

P t :

Partial pressure of toluene, atm

\(- r_{\text{cum}}\) :

Experimental rate of cumene conversion

\(X_{\text{A}}\) :

Moles of aliphatics produced, kgmol

\(X_{\text{ben}}\) :

Moles of benzene produced, kgmol

X cum :

Moles of cumene reacted, kgmol

\(X_{\text{cymene}}\) :

Moles of cymene produced, kgmol

\(X_{\text{DIPT}}\) :

Moles of DIPT produced, kgmol

X expt :

Experimental fractional conversion

\(X_{\text{xyl}}\) :

Moles of xylene produced, kgmol

X pred :

Predicted fractional conversion

X t :

Moles of toluene reacted, kgmol

τ :

Space–time, kg h/kgmol

References

  • Abichandani JS, Mohr GD, Tinger RG (2015) Transalkylation of heavy aromatic hydrocarbon feedstocks. US Patent 20150353447

  • Abudawoud R (2015) Combined heavy reformate dealkylation-transalkylation process for maximizing xylenes production. US Patent 20150175504

  • Alaba PA, Sani YM, Mohammed IY, Daud WMAW (2016) Insight into catalyst deactivation mechanism and suppression techniques in thermocatalytic deoxygenation of bio-oil over zeolites. Rev Chem Eng 32(1):71–91. doi:10.1515/revce-2015-0025

    Article  CAS  Google Scholar 

  • Arvela MP, Kumar N, Diaz SF, Aho A, Tenho M, Salonen J, Leino AR, Kordas K, Laukkanen P, Dahl J, Sinev L, Salmi T, Murzin DY (2013) Isomerization of β-pinene oxide over Sn-modified zeolites. J Mol Catal A Chem 366:228–237. doi:10.1016/j.molcata.2012.09.028

    Article  Google Scholar 

  • Bandyopadhyay R, Singh PS, Shaikh RA (1996) Transalkylation of cumene with toluene over zeolite beta. Appl Catal A 135(2):249–259. doi:10.1016/0926-860X(95)00224-3

    Article  CAS  Google Scholar 

  • Bandyopadhyay R, Sugi Y, Kubota Y, Rao BS (1998) Transalkylation reaction –an alternative route to produce industrially important intermediates such as cymene. Catal Today 44(1):245–252. doi:10.1016/S0920-5861(98)00196-5

    Article  CAS  Google Scholar 

  • Brown HC, Nelson KL (1953) An interpretation of meta orientation in the alkylation of toluene. The relative reactivity and isomer distribution in the chloromethylation and mercuration of benzene and toluene. J Am Chem Soc 75(24):6292–6299. doi:10.1021/ja01120a053

    Article  CAS  Google Scholar 

  • Cejka J, Wichterlova B (2002) Acid-catalyzed synthesis of mono- and dialkyl benzenes over zeolites: active sites, zeolite topology, and reaction mechanisms. Catal Rev Sci Eng 44(3):375–421. doi:10.1081/CR-120005741

    Article  Google Scholar 

  • Cejka J, Kapustin GA, Wichterlova B (1994) Factors controlling iso-/n- and para-selectivity in the alkylation of toluene with isopropanol on molecular sieves. Appl Catal A 108:187–204. doi:10.1016/0926-860X(94)85070-4

    Article  CAS  Google Scholar 

  • Chao KJ, Leu LJ (1989) Conversion of toluene and trimetrylbenzene over NAHY zeolites. Zeolites 9(3):193–196. doi:10.1016/0144-2449(89)90025-0

    Article  CAS  Google Scholar 

  • Cricsery SM (1971) The cause of shape selectivity of transalkylation in mordenite. J Catal 23(1):124–130. doi:10.1016/0021-9517(71)90032-7

    Article  Google Scholar 

  • Cullilane NM, Leyshan DM (1954) Titanium tetrachloride as a catalyst in the Friedel–Crafts reaction. Part III. Alkylation. J Chem Soc. doi:10.1039/JR9540002942

    Google Scholar 

  • Das J, Bhat YS, Bhardwaj AI, Halgeri AB (1994) Zeolite beta catalyzed C7 and C9 aromatics transformation. Appl Catal A 116:71–79. doi:10.1016/0926-860X(94)80280-7

    Article  CAS  Google Scholar 

  • Dumitriu E, Hulea V, Kaliaguine S, Huang MM (1996) Transalkylation of toluene with trimethylbenzenes. Appl Catal A Gen 135:57–81. doi:10.1016/0926-860X(95)00236-7

    Article  CAS  Google Scholar 

  • Dumitriu E, Guimon C, Hulea V, Lutic D, Fechete I (2002) Transalkylation of toluene with trimethylbenzenes catalyzed by various AFI catalysts. Appl Catal A 237:211–221. doi:10.1016/S0926-860X(02)00329-0

    Article  CAS  Google Scholar 

  • Flockhart BD, Liew KY, Pink RC (1981) Alkylation of toluene with propene using zeolite catalysts. J Catal 72(2):314–321. doi:10.1016/0021-9517(81)90014-2

    Article  CAS  Google Scholar 

  • Forni L, Cremona G, Missineo F, Bellussi G, Perego C, Pazzuconi G (1995) Transalkylation of m-diethylbenzene over large-pore zeolites. Appl Catal A 121(2):261–272. doi:10.1016/0926-860X(94)00209-6

    Article  CAS  Google Scholar 

  • Fraenkel D, Levy M (1989) Comparative study of shape-selective toluene alkylations over HZSM-5. J Catal 118(1):10–21. doi:10.1016/0021-9517(89)90296-0

    Article  CAS  Google Scholar 

  • Ghiaci M, Abbaspur A, Arshadi M, Aghabarari B (2007) Internal versus external surface active sites in ZSM-5 zeolite Part 2. Toluene alkylation with methanol and 2-propanol catalyzed by modified and unmodified H3PO4/ZSM-5. Appl Catal A 316:32–46. doi:10.1016/j.apcata.2006.09.014

    Article  CAS  Google Scholar 

  • Kauffman S (1968) Production of cumene. US Patent No. 3385906

  • Khattaf SA, Ali SA, Aitani AM, Zilkova N, Kubicka H, Cejka J (2014) Recent advances in reactions of alkylbenzenes over novel zeolites: the effects of zeolite structure and morphology. Catal Rev Sci Eng 56(4):333–402. doi:10.1080/01614940.2014.946846

    Article  Google Scholar 

  • Kondamudi K, Upadhyayula S (2008) Transalkylation of diisopropylbenzene with benzene over SAPO-5 catalyst: a kinetic study. J Chem Tech and Biotech 83:699–706. doi:10.1002/jctb.1859

    Article  CAS  Google Scholar 

  • Krishnan AV, Ojha K, Pradhan NC (2002) Alkylation of phenol with tertiary butyl alcohol over zeolites. Org Process Res Dev 6(2):132–137. doi:10.1021/op010077n

    Article  CAS  Google Scholar 

  • Maity SK, Seetaram CH, Pradan NC (2006) Kinetics of transalkylation of diisopropylbenzene with benzene. Presented at CHEMCON, Ankleswar, Gujrat, India

  • Marakatti VS, Halgeri AB (2015) Metal ion-exchanged zeolites as highly active solid acid catalysts for the green synthesis of glycerol carbonate from glycerol. R Soc Chem Adv 5:14286–14293. doi:10.1039/C4RA16052E

    CAS  Google Scholar 

  • Mavrodinova V, Popava M, Pal-Borbely G, Mihalyi RM, Minchev CH (2003a) a) Transalkylation of toluene with cumene over zeolites Y dealuminated in solidstate. Part I. Effect of the alteration of Broensted acidity. Appl Catal A 248(1–2):181–196. doi:10.1016/S0926-860X(03)00161-3

    Article  CAS  Google Scholar 

  • Mavrodinova V, Popava M, Mihalyi RM, Pal-Borbely G, Minchev CH (2003b) Transalkylation of toluene with cumene over zeolites Y dealuminated in solidstate. Part II. Effect of the introduced Lewis acid sites. Appl Catal A 248(1–2):197–209. doi:10.1016/S0926-860X(03)00153-4

    Article  CAS  Google Scholar 

  • Nikita MB, Marina GA, Alexey VR, Eugenia VB, Natalia SL, Alexey AG, Ilya NI, Sergey IT, Lev NS (2014) Transalkylation of higher trifluoromethylated fullerenes with C70: a pathway to new addition patterns of C70(CF3)8. Chem Eur J 20:1126–1133. doi:10.1002/chem.201302480

    Article  Google Scholar 

  • Obadia MM, Bhanu PM, Anatoli S, Damien M, Eric D (2015) Reprocessing and recycling of highly cross-linked ion-conducting networks through transalkylation exchanges of C–N bonds. J Am Chem Soc 137(18):6078–6083. doi:10.1021/jacs.5b02653

    Article  CAS  Google Scholar 

  • Odedairo T, Al-Khattaf S (2011) Alkylation and transalkylation of alkylbenzenes in cymene production over zeolite catalysts. Chem Eng J 167:240–254. doi:10.1016/j.cej.2010.12.043

    Article  CAS  Google Scholar 

  • Peter A, Mihaly-Cozmuta L, Mihaly-Cozmuta A, Nicula C, Indrea E, Tutu H (2012) Calcium- and ammonium ion-modification of zeolite amendments affects the metal-uptake of Hieracium piloselloides in a dose-dependent way. J Environ Monit 14:2807–2814. doi:10.1021/ic901814f

    Article  CAS  Google Scholar 

  • Pieter JS, Julia SW, Bert FS, Edward IS, Robert AS (2010) Transition-Metal Ions in Zeolites: coordination and activation of oxygen. Inorg Chem 49(8):3573–3583. doi:10.1021/ic901814f

    Article  Google Scholar 

  • Rahimi N, Karimzadeh R (2011) Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Appl Catal A 398(1–2):1–17. doi:10.1016/j.apcata.2011.03.009

    Article  CAS  Google Scholar 

  • Rashid NA, Boldingh EP, Shih R, Schreier MR, Lafyatis DS (2014) Low pressure transalkylation process. US Patent WO2014055212

  • Reddy KSN, Rao BS, Shiralkar VP (1995) Selective formation of cymenes over large pore zeolites. Appl Catal A 121(2):191–201. doi:10.1016/0926-860X(94)00207-X

    Article  CAS  Google Scholar 

  • Rumyantseva YB, Kurganova EA, Koshel GN, Ivanova AA, Khrenova VV (2011) Cymenes synthesis with toluene alkylation by isopropyl alcohol. Izv Vyss Uchebnykh Zaveden Seriya Khimiya i Khimicheskaya Tekhnologiya 54(9):27–29

    CAS  Google Scholar 

  • Serra MJ, Guillon E, Corma A (2005) Optimizing the conversion of heavy reformate streams into xylenes with zeolite catalysts by using knowledge base high-throughput experimentation techniques. J Catal 232(2):342–354. doi:10.1016/j.jcat.2005.03.021

    Article  CAS  Google Scholar 

  • Sridevi U, Rao BKB, Pradhan NC, Tambe SS, Satyanarayana CV, Rao BS (2001) Kinetics of isopropylation of benzene over H-beta catalyst. Ind Eng Chem Res 40:3133–3138. doi:10.1021/ie000929s

    Article  CAS  Google Scholar 

  • Srilatha K, Prabhavathi Devi BLA, Lingaiah N, Prasad RBN, Sai Prasad PS (2012) Biodiesel production from used cooking oil by two-step heterogeneous catalyzed process. Bioresour Technol 119:306–311. doi:10.1016/j.biortech.2012.04.098

    Article  CAS  Google Scholar 

  • Wang H, Zou Y (2003) Modified beta zeolite as catalyst for fries rearrangement reaction. Catal Lett 86:163–167. doi:10.1023/2FA/3A1022642231296

    Article  CAS  Google Scholar 

  • Wang I, Tsai TC, Huang ST (1990) Disproportionation of toluene and of trimethylbenzene and their transalkylation over zeolite beta. Ind Eng Chem Res 29:2005–2012. doi:10.1021/ie00106a005

    Article  CAS  Google Scholar 

  • Wang K, Cheng JC, Helton TE (2010) Transalkylation of polycyclohexylbenzenes. US Patent WO 2010138248 A2

  • Xiaomin N, Xishi W, Shaogang Z, Mei Z (2014) Experimental study on the performance of transition metal ions modified zeolite particles in suppressing methane/air coflowing flame on cup burner. J Fire Sci 32(5):417–5430. doi:10.1177/0734904114529402

    Article  Google Scholar 

  • Zhang Q, Ming W, Ma J, Zhang J, Wang P, Li R (2014) De novo assembly of a mesoporous beta zeolite with intracrystalline channels and its catalytic performance for biodiesel production. J Mater Chem A 2:8712–8718. doi:10.1039/C4TA00030G

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, R., Gupta, R.K. & Barman, S. A comparative study of catalytic performance of rare earth metal-modified beta zeolites for synthesis of cymene. Chem. Pap. 71, 137–148 (2017). https://doi.org/10.1007/s11696-016-0071-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0071-x

Keywords

Navigation