Skip to main content

Advertisement

Log in

Synthesis of Ni/GO-TiO2 composites for the photocatalytic hydrogen production and CO2 reduction to methanol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In recent years, different materials have been studied for the hydrogen generation using photocatalytic processes. The formation of graphene oxide-titanium dioxide (GO-TiO2) composites has been reported for different photocatalytic applications since GO may contribute with different desirable properties such as the reduction of the recombination occurred on the metal oxide by the high mobility of charge carriers on the GO surface. In the present work we report the synthesis and application of GO-TiO2 composites and their superficial modification with nickel nanoparticles for two different photocatalytic applications: hydrogen evolution using methanol-water solutions and also for the CO2 reduction to methanol. The GO-TiO2 composites were prepared for the contents of 1, 3 and 5 wt% of GO on TiO2. The GO-TiO2 composites were then superficially modified by Ni nanoparticles at 0.5 wt%. The materials were evaluated under UV light using a pen-ray lamp of 254 nm with an intensity of 2.2 mW/cm2. The most active composite Ni/GO-TiO2 3 wt%, increased the hydrogen production from 389 µmol/h·g up to 2171 µmol/h·g improving the activity of TiO2 in a factor of 5.6. Also, this composite Ni/GO-TiO2 3 wt% showed the highest photocatalytic activity for the CO2 photoreduction to generate up to 55 µmol/h·g of methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ye L, Deng Y, Wang L, Xie H, Su F (2019) Bismuth-Based Photocatalysts for Solar Photocatalytic Carbon Dioxide Conversion, ChemSusChem, 123671–3701

  2. Zhang W, Li K, Zhou D, Zhang W, Gao H (2016) Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method. Energy Policy 92:369–381

    Article  Google Scholar 

  3. Zhang S, Yin X, Zheng Y (2018) Enhanced photocatalytic reduction of CO2 to methanol by ZnO nanoparticles deposited on ZnSe nanosheet. Chem Phys Lett 693:170–175

    Article  CAS  Google Scholar 

  4. Din IU, Shaharun MS, Alotaibi MA, Alharthi AI, Naeem A (2019) Recent developments on heterogeneous catalytic CO2 reduction to methanol. J CO2 Utilization 34:20–33

    Article  CAS  Google Scholar 

  5. Xie F, Chen R, Zhu X, Liao Q, Ye D, Zhang B, Yu Y, Li J (2019) CO2 utilization: Direct power generation by a coupled system that integrates photocatalytic reduction of CO2 with photocatalytic fuel cell. J CO2 Utilization 32:31–36

    Article  CAS  Google Scholar 

  6. Navarro Yerga RM, Álvarez Galván MC, del Valle F, Villoria de la Mano JA, Fierro JLG (2009) Water Splitting on Semiconductor Catalysts under Visible-Light Irradiation, ChemSusChem, 2 471–485

  7. Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass. Chem Rev 107:3952–3991

    Article  CAS  PubMed  Google Scholar 

  8. Oros-Ruiz S, Zanella R, Collins SE, Hernández-Gordillo A, Gómez R (2014) Photocatalytic hydrogen production by Au–MxOy (MAg, Cu, Ni) catalysts supported on TiO2. Catal Commun 47:1–6

    Article  CAS  Google Scholar 

  9. Zou Z, Arakawa H (2003) Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. J Photochem Photobiol A 158:145–162

    Article  CAS  Google Scholar 

  10. Quiroz-Cardoso O, Oros-Ruiz S, Solís-Gómez A, López R, Gómez R (2019) Enhanced photocatalytic hydrogen production by CdS nanofibers modified with graphene oxide and nickel nanoparticles under visible light. Fuel 237:227–235

    Article  CAS  Google Scholar 

  11. Navarro Yerga RM, Alvarez-Galván MC, Vaquero F, Arenales J, Fierro JLG (2013) Chap. 3 - Hydrogen Production from Water Splitting Using Photo-Semiconductor Catalysts. In: Gandía LM, Arzamendi G, Diéguez PM (eds) Renewable Hydrogen Technologies. Elsevier, Amsterdam, pp 43–61

    Chapter  Google Scholar 

  12. Shown I, Hsu H-C, Chang Y-C, Lin C-H, Roy PK, Ganguly A, Wang C-H, Chang J-K, Wu C-I, Chen L-C, Chen K-H (2014) Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. Nano Lett 14:6097–6103

    Article  CAS  PubMed  Google Scholar 

  13. Silva TLS, Morales-Torres S, Esteves CMP, Ribeiro AR, Nunes OC, Figueiredo JL, Silva AMT (2018) Desalination and removal of organic micropollutants and microorganisms by membrane distillation. Desalination 437:121–132

    Article  CAS  Google Scholar 

  14. Chen L, Yang S, Mu L, Ma P-C (2018) Three-dimensional titanium dioxide/graphene hybrids with improved performance for photocatalysis and energy storage. J Colloid Interface Sci 512:647–656

    Article  CAS  PubMed  Google Scholar 

  15. Timoumi A, Alamri SN, Alamri H (2018) The development of TiO2-graphene oxide nano composite thin films for solar cells. Results in Physics 11:46–51

    Article  Google Scholar 

  16. Liu S, Yue W, Zhang C, Du D, Yang X (2018) Enhanced lithium storage properties of graphene-based metal oxides by coating with amorphous TiO2 nanofilms. J Alloys Compd 769:293–300

    Article  CAS  Google Scholar 

  17. Liu L, Li Y, Tao E, Jiang Z, Yang S, Xu J, Qian J (2018) Surfactant-assisted titanium dioxide/graphene composite for enhanced conductivity. Mater Chem Phys 217:365–370

    Article  CAS  Google Scholar 

  18. Luo B, Liu S, Zhi L (2012) Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas, Small (Weinheim an der Bergstrasse. Germany) 8:630–646

    CAS  Google Scholar 

  19. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131

    Article  CAS  Google Scholar 

  20. Axet MR, Dechy-Cabaret O, Durand J, Gouygou M, Serp P (2016) Coordination chemistry on carbon surfaces. Coord Chem Rev 308:236–345

    Article  CAS  Google Scholar 

  21. Pastrana-Martínez LM, Morales-Torres S, Figueiredo JL, Faria JL, Silva AMT 5 - Graphene photocatalysts, in: Z. Lin, M. Ye, M. Wang (Eds.) Multifunctional Photocatalytic Materials for Energy, Woodhead Publishing2018, pp. 79–101

  22. Raghavan N, Thangavel S, Sivalingam Y, Venugopal G (2018) Investigation of photocatalytic performances of sulfur based reduced graphene oxide-TiO2 nanohybrids. Appl Surf Sci 449:712–718

    Article  CAS  Google Scholar 

  23. Morales-Torres S, Pastrana-Martínez LM, Figueiredo JL, Faria JL, Silva AM (2012) Design of graphene-based TiO2 photocatalysts–a review. Environ Sci Pollut Res Int 19:3676–3687

    Article  CAS  PubMed  Google Scholar 

  24. Zhao H, Chen S, Quan X, Yu H, Zhao H (2016) Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Appl Catal B 194:134–140

    Article  CAS  Google Scholar 

  25. Wu W, Shi Y, Liu G, Fan X, Yu Y (2020) Recent development of graphene oxide based forward osmosis membrane for water treatment: A critical review. Desalination 491:114452

    Article  CAS  Google Scholar 

  26. Wenninger N, Bračič U, Kollau A, Pungjunun K, Leitinger G, Kalcher K, Ortner A (2021) Development of an electrochemical sensor for nitric oxide based on carbon paste electrode modified with Nafion, gold nanoparticles and graphene nanoribbons. Sens Actuators B 346:130532

    Article  CAS  Google Scholar 

  27. Liang B, Ren C, Zhao Y, Li K, Lv C (2020) Nitrogenous mesoporous carbon coated with Co/Cu nanoparticles modified activated carbon as air cathode catalyst for microbial fuel cell. J Electroanal Chem 860:113904

    Article  CAS  Google Scholar 

  28. Kheirabadi M, Samadi M, Asadian E, Zhou Y, Dong C, Zhang J, Moshfegh AZ (2019) Well-designed Ag/ZnO/3D graphene structure for dye removal: Adsorption, photocatalysis and physical separation capabilities. J Colloid Interface Sci 537:66–78

    Article  CAS  PubMed  Google Scholar 

  29. López R (2012) Gómez Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7

    Article  CAS  Google Scholar 

  30. Park S, Baek S, Kim D-W, Lee S (2018) Oxygen-vacancy-modified brookite TiO2 nanorods as visible-light-responsive photocatalysts. Mater Lett 232:146–149

    Article  CAS  Google Scholar 

  31. Bellardita M, Di Paola A, Megna B, Palmisano L (2017) Absolute crystallinity and photocatalytic activity of brookite TiO2 samples. Appl Catal B 201:150–158

    Article  CAS  Google Scholar 

  32. Haldorai Y, Rengaraj A, Kwak CH, Huh YS (2014) Fabrication of nano TiO2@graphene composite: Reusable photocatalyst for hydrogen production, degradation of organic and inorganic pollutants. Synth Met 198:10–18

    Article  CAS  Google Scholar 

  33. Dubey PK, Tripathi P, Tiwari RS, Sinha ASK (2014) Synthesis of reduced graphene oxideeTiO2 nanoparticle composite systems and its application in hydrogen production. Int J Hydrog Energy 39:16282–16292

    Article  CAS  Google Scholar 

  34. Kusiak-Nejman E, Wanag A, Kowalczyk Ł, Kapica-Kozar J, Colbeau-Justin C, Mendez MG, Medrano AW, Morawski (2017) Graphene oxide-TiO2 and reduced graphene oxide-TiO2 nanocomposites: Insight in charge-carrier lifetime measurements. Catal Today 287:189–195

    Article  CAS  Google Scholar 

  35. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87 1051–1069

  36. Vahidzadeh E, Fatemi S, Nouralishahi A (2018) Synthesis of a nitrogen-doped titanium dioxide–reduced graphene oxide nanocomposite for photocatalysis under visible light irradiation. Particuology 41:48–57

    Article  CAS  Google Scholar 

  37. Kumar S, Singh R, Mahajan A, Bedi RK, Saxena V, Aswal DK (2018) Optimized reduction of graphite oxide for highly exfoliated silver nanoparticles anchored graphene sheets for dye sensitized solar cell applications. Electrochim Acta 265:131–139

    Article  CAS  Google Scholar 

  38. Yoon D, Hwang J, Kim DH, Chang W, Chung KY, Kim J (2017) One-pot route for uniform anchoring of TiO2 nanoparticles on reduced graphene oxides and their anode performance for lithium-ion batteries. J Supercrit Fluids 125:66–78

    Article  CAS  Google Scholar 

  39. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett 8:36–41

    Article  CAS  PubMed  Google Scholar 

  40. Li H, Cui X (2014) A hydrothermal route for constructing reduced graphene oxide/TiO2 nanocomposites: Enhanced photocatalytic activity for hydrogen evolution. Int J Hydrog Energy 39:19877–19886

    Article  CAS  Google Scholar 

  41. Gua Y, Xing M, Zhang J (2014) Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites. Appl Surf Sci 319:6–15

    Google Scholar 

  42. Tan L-L, Ong W-J, Chai S-P, Mohamed AR (2013) Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res Lett 8:465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Salem S, Salem A, Rezaei M (2016) Facile decoration of TiO2 nanoparticles on graphene for solar degradation of organic dye. Solid State Sci 61:131–135

    Article  CAS  Google Scholar 

  44. Fei P, Wang Q, Zhong M, Su B (2016) Preparation and adsorption properties of enhanced magnetic zinc ferrite-reduced graphene oxide nanocomposites via a facile one-pot solvothermal method. J Alloys Compd 685:411–417

    Article  CAS  Google Scholar 

  45. Baniasadi H, Ramazani A, Mashayekhan SAS, Ghaderinezhad F (2014) Preparation of conductive polyaniline/graphene nanocomposites via in situ emulsion polymerization and product characterization. Synth Met 196:199–205

    Article  CAS  Google Scholar 

  46. Hou C, Zhang Q, Zhu M, Li Y, Wang H (2011) One-step synthesis of magnetically-functionalized reduced graphite sheets and their use in hydrogels. Carbon 49:47–53

    Article  CAS  Google Scholar 

  47. Tan Z, Sato K, Ohara S (2015) Synthesis of layered nanostructured TiO2 by hydrothermal method. Adv Powder Technol 26:296–302

    Article  CAS  Google Scholar 

  48. Kansal SK, Sood S, Umar A, Mehta SK (2013) Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. J Alloys Compd 581:392–397

    Article  CAS  Google Scholar 

  49. Parida KM, Sahu N, Mohapatra P, Scurrell MS (2010) Low temperature CO oxidation over gold supported mesoporous Fe–TiO2. J Mol Catal A: Chem 319:92–97

    Article  CAS  Google Scholar 

  50. Oros-Ruiz S, Hernández-Gordillo A, García-Mendoza C, Rodríguez-Rodríguez AA, Gómez R (2016) Comparative activity of CdS nanofibers superficially modified by Au, Cu, and Ni nanoparticles as co-catalysts for photocatalytic hydrogen production under visible light. J Chem Technol Biotechnol 91:2205–2210

    Article  CAS  Google Scholar 

  51. García-Mendoza C, Oros-Ruiz S, Ramírez-Rave S, Morales-Mendoza G, López R, Gómez R (2017) Synthesis of Bi2S3 nanorods supported on ZrO2 semiconductor as an efficient photocatalyst for hydrogen production under UV and visible light. J Chem Technol Biotechnol 92:1503–1510

    Article  CAS  Google Scholar 

  52. Xiang Q, Lv K, Yu J (2010) Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. Appl Catal B 96:557–564

    Article  CAS  Google Scholar 

Download references

Acknowledgements

O. Quiroz-Cardoso would like to thank to CONACyT for the master’s scholarship 592695. S. Oros-Ruiz would like to thank to CONACyT for the project Cátedras-CONACyT/2586. The authors would also like to thank to CONACyT for financial support granted through the project 317398 Development and optimization of new materials for NO and CO2 reduction: Theoretical-Experimental Study. Thanks are given to CONACYT-SENER-SUSTENTABILIDAD-ENERGÉTICA 2017-02 INSTITUTIONAL LINKS, for finantial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Socorro Oros-Ruiz.

Ethics declarations

Declaration of competing interest

There is no potential competing interest reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quiroz-Cardoso, O., Suárez, V., Oros-Ruiz, S. et al. Synthesis of Ni/GO-TiO2 composites for the photocatalytic hydrogen production and CO2 reduction to methanol. Top Catal 65, 1015–1027 (2022). https://doi.org/10.1007/s11244-022-01643-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01643-0

Keywords

Navigation