Skip to main content
Log in

GO/TiO2 composites as a highly active photocatalyst for the degradation of methyl orange

  • Functional Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Reduced graphene oxide supported titanium dioxide (GO/TiO2) heterojunction composites as highly active photocatalysts were synthesized via simple ultrasonic mixing and hydrothermal reaction using TiCl3 and GO as precursors. Their structure and morphology were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra, UV-vis spectroscopy, and thermogravimetic analysis. The GO/TiO2 heterojunction composites were used to degrade methyl orange (MO). The adsorption and photocatalytic degradation rate of the prepared GO/TiO2 composites increased by nearly three times compared with that of pristine TiO2 or GO, which reached up 90%, to degrade MO after 4 h, which provides a simple method to obtain photocatalytic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K.J. Balkus, Jr.: Hydrothermal synthesis of graphene–TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2, 949 (2012).

    Article  CAS  Google Scholar 

  2. F. Guo, W. Shi, X. Lin, and G. Che: Hydrothermal synthesis of graphitic carbon nitride–BiVO4 composites with enhanced visible light photocatalytic activities and the mechanism study. J. Phys. Chem. Solids 75, 1217 (2014).

    Article  CAS  Google Scholar 

  3. Y. Huo, R. Hou, X. Chen, H. Yin, Y. Gao, and H. Li: BiOBr visible-light photocatalytic films in a rotating disk reactor for the degradation of organics. J. Mater. Chem. A 3, 14801 (2015).

    Article  CAS  Google Scholar 

  4. Q. Wang, S. Dong, D. Zhang, C. Yu, J. Lu, D. Wang, and J. Sun: Magnetically recyclable visible-light-responsive MoS2@Fe3O4 photocatalysts targeting efficient wastewater treatment. J. Mater. Sci. 53, 1135 (2018).

    Article  CAS  Google Scholar 

  5. Z. Zhang, J. Zhang, S. Li, J. Liu, M. Dong, Y. Li, N. Lu, S. Lei, J. Tang, and J. Fan: Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Composites, Part B 176, 107338 (2019).

    Article  CAS  Google Scholar 

  6. L. Wang, H. Hu, J. Xu, S. Zhu, A. Ding, and C. Deng: WO3 nanocubes: Hydrothermal synthesis, growth mechanism, and photocatalytic performance. J. Mater. Res. 34, 2955 (2019).

    Article  CAS  Google Scholar 

  7. W. Wang, J. Fang, S. Shao, M. Lai, and C. Lu: Compact and uniform TiO2@g-C3N4 core–shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl. Catal., B 217, 57 (2017).

    Article  CAS  Google Scholar 

  8. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye: Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 24, 229 (2012).

    CAS  Google Scholar 

  9. S. Liu, Y. Wang, L. Ma, and H. Zhang: Ni2P/ZnS(CdS) core/shell composites with their photocatalytic performance. J. Mater. Res. 33, 3580 (2018).

    Article  CAS  Google Scholar 

  10. H. Wang, K. Zhu, L. Yan, C. Wei, Y. Zhang, C. Gong, J. Guo, J. Zhang, D. Zhang, and J. Zhang: Efficient and scalable high-quality graphene nanodot fabrication through confined lattice plane electrochemical exfoliation. Chem. Commun. 55, 5805 (2019).

    Article  CAS  Google Scholar 

  11. Y. Wei, Y. Shi, Z. Jiang, X. Zhang, H. Chen, Y. Zhang, J. Zhang, and C. Gong: High performance and lightweight electromagnetic wave absorbers based on TiN/RGO flakes. J. Alloys Compd. 810, 151950 (2019).

    Article  CAS  Google Scholar 

  12. Y. Guo, K. Ruan, X. Yang, T. Ma, J. Kong, N. Wu, J. Zhang, J. Gu, and Z. Guo: Constructing fully carbon-based fillers with hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites. J. Mater. Chem. C 7, 7035 (2019).

    Article  CAS  Google Scholar 

  13. W. Zhang, C. Wang, X. Liu, and J. Li: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).

    Article  CAS  Google Scholar 

  14. X. Lang, X. Chen, and J. Zhao: Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 43, 473 (2014).

    Article  CAS  Google Scholar 

  15. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann: Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 114, 9919 (2014).

    Article  CAS  Google Scholar 

  16. J. Zhang, J. Yi, and Y. Jiao: Preparation and application of water-soluble TiO2-ionic liquids hybrid nanomaterials. J. Inorg. Mater. 33, 577 (2018).

    Article  Google Scholar 

  17. Y. Guo, X. Yang, K. Ruan, J. Kong, M. Dong, J. Zhang, J. Gu, and Z. Guo: Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl. Mater. Interfaces 11, 25465 (2019).

    Article  CAS  Google Scholar 

  18. C. Liang, P. Song, A. Ma, X. Shi, H. Gu, L. Wang, H. Qiu, J. Kong, and J. Gu: Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution. Compos. Sci. Technol. 181, 107683 (2019).

    Article  CAS  Google Scholar 

  19. C. Liang, P. Song, H. Qiu, Y. Zhang, X. Ma, F. Qi, H. Gu, J. Kong, D. Cao, and J. Gu: Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11, 22590 (2019).

    Article  CAS  Google Scholar 

  20. J. Zhang, W. Zhang, L. Wei, L. Pu, J. Liu, H. Liu, Y. Li, J. Fan, T. Ding, and Z. Guo: Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol. Mater. Eng. 304, 1900374 (2019).

    Article  CAS  Google Scholar 

  21. Z. Lyu, B. Liu, R. Wang, and L. Tian: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).

    Article  CAS  Google Scholar 

  22. L. Thirugnanam, S. Kaveri, M. Dutta, N.V. Jaya, and N. Fukata: Porous tubular rutile TiO2 nanofibers: Synthesis, characterization and photocatalytic properties. J. Nanosci. Nanotechnol. 14, 3034 (2014).

    Article  CAS  Google Scholar 

  23. S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’shea, J.A. Byrne, and D.D. Dionysiou: New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 5, 2543 (2014).

    Article  CAS  Google Scholar 

  24. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S. Dunlop, J.W. Hamilton, J.A. Byrne, and K. O’shea: A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331 (2012).

    Article  CAS  Google Scholar 

  25. X. Wang, M. Utsumi, Y. Yang, D. Li, Y. Zhao, Z. Zhang, C. Feng, N. Sugiura, and J.J. Cheng: Degradation of microcystin-LR by highly efficient AgBr/Ag3PO4/TiO2 heterojunction photocatalyst under simulated solar light irradiation. J. Phys. Chem. Lett. 325, 1 (2015).

    CAS  Google Scholar 

  26. P. Song, C. Liang, L. Wang, H. Qiu, H. Gu, J. Kong, and J. Gu: Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol. 181, 107698 (2019).

    Article  CAS  Google Scholar 

  27. X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, and J. Gu: Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Composites, Part A 128, 105670 (2020).

    Article  CAS  Google Scholar 

  28. G. Liu, Y. Zhao, C. Sun, F. Li, G.Q. Lu, and H.M. Cheng: Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angew. Chem., Int. Ed. 47, 4516 (2008).

    Article  CAS  Google Scholar 

  29. D.H. Kim, H.S. Hong, S.J. Kim, J.S. Song, and K.S. Lee: Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying. J. Alloys Compd. 375, 259 (2004).

    Article  CAS  Google Scholar 

  30. L. Zhang, X. Li, Z. Chang, and D. Li: Preparation, characterization and photoactivity of hollow N, Co co-doped TiO2/SiO2 microspheres. Mater. Sci. Semicond. Process. 14, 52 (2011).

    Article  CAS  Google Scholar 

  31. L.G. Devi and R. Kavitha: A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal., B 140, 559 (2013).

    Article  CAS  Google Scholar 

  32. F. Huang, D. Chen, X.L. Zhang, R.A. Caruso, and Y.B. Cheng: Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells. Adv. Funct. Mater. 20, 1301 (2010).

    Article  CAS  Google Scholar 

  33. S. Wooh, T. Kim, D. Song, Y. Lee, T.K. Lee, V.W. Bergmann, S.A. Weber, J. Bisquert, Y.S. Kang, and K. Char: Surface modification of TiO2 photoanodes with fluorinated self-assembled monolayers for highly efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7, 25741 (2015).

    Article  CAS  Google Scholar 

  34. J. Zhang, S. Liu, C. Yan, X. Wang, L. Wang, Y. Yu, and S. Li: Abrasion properties of self-suspended hairy titanium dioxide nanomaterials. Appl. Nanosci. 7, 691 (2017).

    Article  CAS  Google Scholar 

  35. Y. Xie, G. Ali, S.H. Yoo, and S.O. Cho: Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. ACS Appl. Mater. Interfaces 2, 2910 (2010).

    Article  CAS  Google Scholar 

  36. A.A. Ismail, I. Abdelfattah, A. Helal, S. Al-Sayari, L. Robben, and D. Bahnemann: Ease synthesis of mesoporous WO3–TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination. J. Hazard. Mater. 307, 43 (2016).

    Article  CAS  Google Scholar 

  37. J. Sheng, H. Tong, H. Xu, and C. Tang: Preparation and photocatalytic activity of SnO2@TiO2 core–shell composites modified by Ag. Catal. Surv. Asia 20, 167 (2016).

    Article  Google Scholar 

  38. J. Zhang, Z. Zhang, Y. Jiao, H. Yang, Y. Li, J. Zhang, and P. Gao: The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J. Power Sources 419, 99 (2019).

    Article  CAS  Google Scholar 

  39. Y. Jiao, J. Zhang, S. Liu, Y. Liang, S. Li, H. Zhou, and J. Zhang: The graphene oxide ionic solvent-free nanofluids and their battery performances. Sci. Adv. Mater. 10, 1706 (2018).

    Article  CAS  Google Scholar 

  40. J. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. Tascon: Graphene oxide dispersions in organic solvents. Langmuir 24, 10560 (2008).

    Article  CAS  Google Scholar 

  41. J. Zhang, P. Li, Z. Zhang, X. Wang, J. Tang, H. Liu, Q. Shao, T. Ding, A. Umar, and Z. Guo: Solvent-free graphene liquids: Promising candidates for lubricants without the base oil. J. Colloid Interface Sci. 542, 159 (2019).

    Article  CAS  Google Scholar 

  42. Y. Guo, G. Xu, X. Yang, K. Ruan, T. Ma, Q. Zhang, J. Gu, Y. Wu, H. Liu, and Z. Guo: Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J. Mater. Chem. C 6, 3004 (2018).

    Article  CAS  Google Scholar 

  43. Y. Li, T. Jing, G. Xu, J. Tian, M. Dong, Q. Shao, B. Wang, Z. Wang, Y. Zheng, and C. Yang: 3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme. Polymer 149, 13 (2018).

    Article  CAS  Google Scholar 

  44. K. Sun, J. Dong, Z. Wang, Z. Wang, G. Fan, Q. Hou, L. An, M. Dong, R. Fan, and Z. Guo: Tunable negative permittivity in flexible graphene/PDMS metacomposites. J. Phys. Chem. C 123, 23635 (2019).

    Article  CAS  Google Scholar 

  45. M. Idrees, S. Batool, J. Kong, Q. Zhuang, H. Liu, Q. Shao, N. Lu, Y. Feng, E.K. Wujcik, and Q. Gao: Polyborosilazane derived ceramics-nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim. Acta 296, 925 (2019).

    Article  CAS  Google Scholar 

  46. V. Murugadoss, J. Lin, H. Liu, X. Mai, T. Ding, Z. Guo, and S. Angaiah: Optimizing graphene content in a NiSe/graphene nanohybrid counter electrode to enhance the photovoltaic performance of dye-sensitized solar cells. Nanoscale 11, 17579 (2019).

    Article  CAS  Google Scholar 

  47. Y. He, Q. Chen, H. Liu, L. Zhang, D. Wu, C. Lu, W. OuYang, D. Jiang, M. Wu, and J. Zhang: Friction and wear of MoO3/graphene oxide modified glass fiber reinforced epoxy nanocomposites. Macromol. Mater. Eng. 304, 1900166 (2019).

    Article  CAS  Google Scholar 

  48. L. Ma, Y. Zhu, P. Feng, G. Song, Y. Huang, H. Liu, J. Zhang, J. Fan, H. Hou, and Z. Guo: Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Composites, Part B 176, 107078 (2019).

    Article  CAS  Google Scholar 

  49. B. Kumar, D.K. Verma, A.K. Singh, Kavita, N. Shukla, and R.B. Rastogi: Nanohybrid Cu@C: Synthesis, characterization and application in enhancement of lubricity. Compos. Interfaces, 1 (2019) https://doi.org/10.1080/09276440.2019.1697134.

  50. C. Lou, T. Jing, J. Tian, Y. Zheng, J. Zhang, M. Dong, C. Wang, C. Hou, J. Fan, and Z. Guo: 3-Dimensional graphene/Cu/Fe3O4 composites: Immobilized laccase electrodes for detecting bisphenol A. J. Mater. Res. 34, 2964 (2019).

    Article  CAS  Google Scholar 

  51. Y. He, Q. Chen, S. Yang, C. Lu, M. Feng, Y. Jiang, G. Cao, J. Zhang, and C. Liu: Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application. Composites, Part A 108, 12 (2018).

    Article  CAS  Google Scholar 

  52. M. Liu, Q. Meng, Z. Yang, X. Zhao, and T. Liu: Ultra-long-term cycling stability of an integrated carbon–sulfur membrane with dual shuttle-inhibiting layers of graphene “nets” and a porous carbon skin. Chem. Commun. 54, 5090 (2018).

    Article  CAS  Google Scholar 

  53. B.S. Gonçalves, L.M. Silva, T.C. de Souza, V.G. de Castro, G.G. Silva, B.C. Silva, K. Krambrock, R.B. Soares, V.F. Lins, and M. Houmard: Solvent effect on the structure and photocatalytic behavior of TiO2-RGO nanocomposites. J. Mater. Res. 34, 3918 (2019).

    Article  CAS  Google Scholar 

  54. X. Yan, X. Yuan, J. Wang, Q. Wang, C. Zhou, D. Wang, H. Tang, J. Pan, and X. Cheng: Construction of novel ternary dual Z-scheme Ag3VO4/C3N4/reduced TiO2 composite with excellent visible-light photodegradation activity. J. Mater. Res. 34, 2024 (2019).

    Article  CAS  Google Scholar 

  55. V. Labunov, L. Tabulina, I. Komissarov, D. Grapov, E. Prudnikova, Y.P. Shaman, S. Basaev, and A. Pavlov: Features of the reduction of graphene from graphene oxide. Russ. J. Phys. Chem. A 91, 1088 (2017).

    Article  CAS  Google Scholar 

  56. B. Cao, H. Liu, L. Yang, X. Li, H. Liu, P. Dong, X. Mai, C. Hou, N. Wang, and J. Zhang: Interfacial engineering for high-efficiency nanorod array-structured perovskite solar cells. ACS Appl. Mater. Interfaces. 11, 33770 (2019).

    Article  CAS  Google Scholar 

  57. L. Yang, X. Wang, X. Mai, T. Wang, C. Wang, X. Li, V. Murugadoss, Q. Shao, S. Angaiah, and Z. Guo: Constructing efficient mixed-ion perovskite solar cells based on TiO2 nanorod array. J. Colloid Interface Sci. 534, 459 (2019).

    Article  CAS  Google Scholar 

  58. L. Zhang, M. Qin, W. Yu, Q. Zhang, H. Xie, Z. Sun, Q. Shao, X. Guo, L. Hao, and Y. Zheng: Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J. Electrochem. Soc. 164, H1086 (2017).

    Article  CAS  Google Scholar 

  59. L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, and Z. Guo: Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 164, H651 (2017).

    Article  CAS  Google Scholar 

  60. L. Shindume, Z. Zhao, N. Wang, H. Liu, A. Umar, J. Zhang, T. Wu, and Z. Guo: Enhanced photocatalytic activity of B, N-codoped TiO2 by a new molten nitrate process. J. Nanosci. Nanotechnol. 19, 839 (2019).

    Article  CAS  Google Scholar 

  61. J. Tian, Q. Shao, J. Zhao, D. Pan, M. Dong, C. Jia, T. Ding, T. Wu, and Z. Guo: Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of rhodamine B. J. Colloid Interface Sci. 541, 18 (2019).

    Article  CAS  Google Scholar 

  62. L. Ma, N. Li, G. Wu, G. Song, X. Li, P. Han, G. Wang, and Y. Huang: Interfacial enhancement of carbon fiber composites by growing TiO2 nanowires onto amine-based functionalized carbon fiber surface in supercritical water. Appl. Surf. Sci. 433, 560 (2018).

    Article  CAS  Google Scholar 

  63. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).

    Article  CAS  Google Scholar 

  64. J. Zhang, Y. Liang, X. Wang, H. Zhou, S. Li, J. Zhang, Y. Feng, N. Lu, Q. Wang, and Z. Guo: Strengthened epoxy resin with hyperbranched polyamine-ester anchored graphene oxide via novel phase transfer approach. Adv. Compos. Hybrid Mater. 1, 300 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support from the special fund of Shaanxi Provincial Education Department (16JK1612), the Key Laboratory of High-tech Research on Marine Functional Thin Film Materials in Zhenjiang (ZHZ2019008), the key research and development project of Shaanxi Province in 2017 (2017GY-180), and the Provincial College Students Innovation and Entrepreneurship Program (201819018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunling Lin, Jiaoxia Zhang or Yuqing Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Gao, Y., Zhang, J. et al. GO/TiO2 composites as a highly active photocatalyst for the degradation of methyl orange. Journal of Materials Research 35, 1307–1315 (2020). https://doi.org/10.1557/jmr.2020.41

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.41

Navigation