Skip to main content

Advertisement

Log in

Ni–Co Bimetallic Catalysts for Hydrogen Production by Steam Reforming Ethanol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ni–Co catalysts supported on MgAl2O4–CeO2 were prepared by the sol–gel method. The solids were calcined under a reducing atmosphere to obtain Ni and/or Co active sites. The influence of the cobalt content (1, 3 and 5% w/w) was studied on bimetallic catalysts containing 8% w/w of Ni. The catalysts were characterized by TG, FTIR, SBET, AAS, XRD, TPR, TEM, EELS, EFTEM, TPO and SEM. XRD patterns of the reduced samples did not reveal the presence of Ni nor Co, nor the possible formation of a metallic alloy, which suggests that metallic crystallite sizes are smaller than the detection limit of the technique (5 nm). The catalysts were evaluated in the ethanol steam reforming reaction at 650 °C for 7 h. The results showed that the catalytic activity and the H2 selectivity are favored in bimetallic catalysts. The main reaction products were H2, CO2, CO and, to a lesser amount, CH4, being the hydrogen selectivity being greater than 80%. The best behavior in terms of the activity, stability and tolerance to carbon deposition was observed in Co3Ni/MC system. These results suggest the existence of an optimal Co/Ni ratio in the sample whit 3 wt% Co and 8 wt% Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lebrouhiab BE, Djoupo JJ, Lamrani B, Benabdelaziz K, Kousksoua T (2022) Global hydrogen development—a technological and geopolitical overview. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2021.12.076

    Article  Google Scholar 

  2. Baumann M, Domnik T, Haase M, Wulf C, Emmerich P, Rösch C, Zapp P, Naegler T, Weil M (2021) Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy. Technol Forecast Soc Chang. https://doi.org/10.1016/j.techfore.2020.120505

    Article  Google Scholar 

  3. Dou B, Zhang H, Song Y, Zhao L, Jiang B, He M, Ruan C, Chen H, Xu Y (2019) Hydrogen production from the thermochemical conversion of biomass: issues and challenges. Sustain Energy Fuels. https://doi.org/10.1039/C8SE00535D

    Article  Google Scholar 

  4. Moravvej Z, Soroush E, Makarem MA, Rahimpour MR (2021) Thermochemical routes for hydrogen production from biomass. Adv Bioenergy Microfluid App. https://doi.org/10.1016/B978-0-12-821601-9.00007-8

    Article  Google Scholar 

  5. Bepari S, Kuila D (2020) Steam reforming of methanol, ethanol and glycerol over nickel-based catalysts—a review. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019.08.003

    Article  Google Scholar 

  6. Ochoa A, Bilbao J, Gayubo AG, Castaño P (2020) Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: a review. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2019.1096000

    Article  Google Scholar 

  7. Zanchet D, Santos JBO, Damyanova S, Gallo JMR, Bueno JMC (2015) Toward understanding metal-catalyzed ethanol reforming. ACS Catal. https://doi.org/10.1021/cs5020755

    Article  Google Scholar 

  8. Mattos L, Jacobs G, Davis B, Noronha F (2012) Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem Rev. https://doi.org/10.1021/cr2000114

    Article  PubMed  Google Scholar 

  9. Bilal M, Jackson SD (2017) Ethanol steam reforming over Pt/Al2O3 and Rh/Al2O3 catalysts: the effect of impurities on selectivity and catalyst deactivation. Appl Catal A. https://doi.org/10.1016/j.apcata.2016.10.020

    Article  Google Scholar 

  10. Gaudillere C, Gonzalez JJ, Chica A, Serra JM (2017) YSZ monoliths promoted with Co as catalysts for the production of H2 by steam reforming of ethanol. Appl Catal A. https://doi.org/10.1016/j.apcata.2017.03.008

    Article  Google Scholar 

  11. Sharma YC, Kumar A, Prasad R, Upadhyay SN (2017) Ethanol steam reforming for hydrogen production: latest and effective catalyst modification strategies to minimize carbonaceous deactivation. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2017.02.049

    Article  Google Scholar 

  12. Parlett CM, Durndell LJ, Isaacs MA, Liu X, Wu C (2020) Ethanol steam reforming for hydrogen production over hierarchical macroporous mesoporous SBA-15 supported nickel nanoparticles. Top Catal. https://doi.org/10.1007/s11244-020-01265-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Costa ICS, Assaf EM, Assaf JM (2021) Improving coking resistance and catalytic performance of Ni catalyst from LaNiO3 perovskite by dispersion on SBA-15 mesoporous silica for hydrogen production by steam reforming of ethanol. Top Catal. https://doi.org/10.1007/s11244-021-01533-x

    Article  Google Scholar 

  14. Ogo S, Sekine Y (2020) Recent progress in ethanol steam reforming using non-noble transition metal catalysts: a review. Fuel Process Technol. https://doi.org/10.1016/j.fuproc.2019.106238

    Article  Google Scholar 

  15. Muñoz M, Moreno S, Molina R (2012) Synthesis of Ce and Pr-promoted Ni and Co catalysts from hydrotalcite type precursors by reconstruction method. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2012.09.132

    Article  Google Scholar 

  16. Palma V, Ruocco C, Meloni E, Ricca A (2017) Renewable hydrogen from ethanol reforming over CeO2–SiO2 based catalysts. Catalysts. https://doi.org/10.3390/catal7080226

    Article  Google Scholar 

  17. Zhurka MD, Lemonidou AA, Kechagiopoulos PN (2021) Elucidation of metal and support effects during ethanol steam reforming over Ni and Rh based catalysts supported on (CeO2)–ZrO2–La2O3. Catal Today. https://doi.org/10.1016/j.cattod.2020.03.020

    Article  Google Scholar 

  18. Wu Y, Pei C, Tian H, Liu T, Zhang X, Chen S, Xiao Q, Wang X, Gong J (2021) Role of Fe species of Ni-based catalysts for efficient low-temperature ethanol steam reforming. JACS Au. https://doi.org/10.1021/jacsau.1c00217

    Article  PubMed  PubMed Central  Google Scholar 

  19. Niazi Z, Irankhah A, Wang Y, Arandiyan H (2020) Cu, Mg and Co effect on nickel-ceria supported catalysts for ethanol steam reforming reaction. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2020.06.001

    Article  Google Scholar 

  20. Moretti E, Storaro L, Talon A, Chitsazan S, Garbarino G, Busca G, Finocchio E (2015) Ceria-zirconia based catalysts for ethanol steam reforming. Fuel. https://doi.org/10.1016/j.fuel.2015.02.077

    Article  Google Scholar 

  21. Rodriguez-Gomez A, Caballero A (2018) Bimetallic Ni–Co/SBA-15 catalysts for reforming of ethanol: how cobalt modifies the nickel metal phase and product distribution. Mol Catal. https://doi.org/10.1016/j.mcat.2018.02.011

    Article  Google Scholar 

  22. Nejat T, Jalalinezhad P, Hormozi F, Bahrami Z (2019) Hydrogen production from steam reforming of ethanol over Ni–Co bimetallic catalysts and MCM-41 as support. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2019.01.025

    Article  Google Scholar 

  23. Zhao X, Gongxuan L (2016) Modulating and controlling active species dispersion over Ni–Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2015.09.063

    Article  Google Scholar 

  24. Van Dillen AJ, Terorde RJ, Lensveld DJ, Geus JW, Jong KP (2003) Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. J Catal. https://doi.org/10.1016/S0021-9517(02)00130-6

    Article  Google Scholar 

  25. Dhand C, Dwivedi N, Loh XJ, Ying ANJ, Verma NK, Beuerman RW, Lakshminarayanan R, Ramakrishna S (2015) Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. https://doi.org/10.1039/C5RA19388E

    Article  Google Scholar 

  26. Rao BG, Mukherjee D, Reddy BM (2017) Novel approaches for preparation of nanoparticles. Nanostruct Nov Therapy. https://doi.org/10.1016/B978-0-323-46142-9.00001-3

    Article  Google Scholar 

  27. Słowik G, Greluk M, Rotko M, Machocki A (2018) Evolution of the structure of unpromoted and potassium-promoted ceria-supported nickel catalysts in the steam reforming of ethanol. Appl Catal B. https://doi.org/10.1016/j.apcatb.2017.09.052

    Article  Google Scholar 

  28. Sajjadi SM, Haghighi M, Rahmani F (2015) Sol–gel synthesis of Ni–Co/Al2O3–MgO–ZrO2 nanocatalyst used in hydrogen production via reforming of CH4/CO2 greenhouse gases. J Nat Gas Sci Eng. https://doi.org/10.1016/j.jngse.2014.11.014

    Article  Google Scholar 

  29. Aghamohammadi S, Haghighi M, Maleki M, Rahemi N (2017) Sequential impregnation vs. sol–gel synthesized Ni/Al2O3–CeO2 nanocatalyst for dry reforming of methane: effect of synthesis method and support promotion. Mol Catal. https://doi.org/10.1016/j.mcat.2017.01.012

    Article  Google Scholar 

  30. Hassani Rad SJ, Haghighi M, Eslami AA, Rahmani F, Rahemi N (2016) Sol–gel vs. impregnation preparation of MgO and CeO2 doped Ni/Al2O3 nanocatalysts used in dry reforming of methane: effect of process conditions, synthesis method and support composition. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2016.02.002

    Article  Google Scholar 

  31. Gharahshiran VS, Yousefpour M, Amini V (2020) A comparative study of zirconia and yttria promoted mesoporous carbon-nickel–cobalt catalysts in steam reforming of ethanol for hydrogen production. Mol Catal. https://doi.org/10.1016/j.mcat.2020.110767

    Article  Google Scholar 

  32. Garbarino G, Cavattoni T, Riani P, Brescia R, Canepa F, Busca G (2019) On the role of support in metallic heterogeneous catalysis: a study of unsupported Nickel–Cobalt alloy nanoparticles in ethanol steam reforming. Catal Lett. https://doi.org/10.1007/s10562-019-02688-9

    Article  Google Scholar 

  33. Villagran-Olivares AC, Gomez MF, López C, Barroso MN, Abello MC (2020) Effect of EDTA in preparation of Ni catalysts toward a carbon-resistant ethanol reforming. Appl Catal B. https://doi.org/10.1016/j.apcatb.2019.118510

    Article  Google Scholar 

  34. Greluk M, Rotko M, Turczyniak-Surdacka S (2020) Comparison of catalytic performance and coking resistant behaviors of cobalt-and nickel based catalyst with different Co/Ce and Ni/Ce molar ratio under SRE conditions. Appl Catal A. https://doi.org/10.1016/j.apcata.2019.117334

    Article  Google Scholar 

  35. Wang K, Dou B, Jiang B, Song Y, Zhang C, Zhang Q, Xu Y (2016) Renewable hydrogen production from chemical looping steam reforming of ethanol using xCeNi/SBA-15 oxygen carriers in a fixed-bed reactor. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2016.05.100

    Article  Google Scholar 

  36. Galetti AE, Barroso MN, Gomez MF, Arrua LA, Monzón A, Abello MC (2012) Promotion of Ni/MgAl2O4 catalysts with rare earths for the ethanol steam reforming reaction. Catal Lett. https://doi.org/10.1007/s10562-012-0927-9

    Article  Google Scholar 

  37. Sehested J, Gelten JA, Remediakis IN, Bengaard H, Nørskov JK (2004) Sintering of nickel steam-reforming catalysts: effects of temperature and steam and hydrogen pressures. J Catal. https://doi.org/10.1016/j.jcat.2004.01.026

    Article  Google Scholar 

  38. Barroso MN, Galetti AE, Gomez MF, Arrúa LA, Abello MC (2013) Ni-catalysts supported on ZnxMg1xAl2O4 for ethanol steam reforming: Influence of the substitution for Mg on catalytic activity and stability. Chem Eng J. https://doi.org/10.1016/j.cej.2013.02.051

    Article  Google Scholar 

  39. Villagrán-Olivares AC, Barroso MN, Abello MC (2018) Characterization of CeO2 doped MgAl2O4 prepared by the chelating agents-assisted impregnation method. Química Nova. https://doi.org/10.21577/0100-4042.20170265

    Article  Google Scholar 

  40. Villagrán-Olivares AC, Barroso MN, López C, Llorca J, Abello MC (2021) Chelating agent effects in the synthesis of supported Ni nanoparticles as catalysts for hydrogen production. Appl Catal A. https://doi.org/10.1016/j.apcata.2021.118219

    Article  Google Scholar 

  41. Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope. Springer, New York

    Book  Google Scholar 

  42. Francesconi JA, Mussati MC, Mato RO, Aguirre PA (2007) Analysis of the energy efficiency of an integrated ethanol processor for PEM fuel cell systems. J Power Sources. https://doi.org/10.1016/j.jpowsour.2006.12.109

    Article  Google Scholar 

  43. Perna A (2007) Hydrogen from ethanol: theoretical optimization of a PEMFC system integrated with a steam reforming processor. Int J Hyd Energy. https://doi.org/10.1016/j.ijhydene.2006.08.058

    Article  Google Scholar 

  44. Aly AAM, Osman AH, Mottaleb MA, Gouda GAH (2009) Thermal stability and kinetic studies of cobalt (II), nickel (II), copper (II), cadmium (II) and mercury (II) complexes derived from n-salicylidene Schiff bases. J Chil Chem Soc. https://doi.org/10.4067/S0717-97072009000400005

    Article  Google Scholar 

  45. Hardima KM, Cooper CG, Adesina AA (2004) Multivariate analysis of the role of preparation conditions on the intrinsic properties of a Co–Ni/Al2O3 steam-reforming catalyst. Ind Eng Chem Res. https://doi.org/10.1021/ie049760z

    Article  Google Scholar 

  46. Tsyganok A, Sayari A (2006) Incorporation of transition metals into Mg–Al layered double hydroxides: coprecipitation of cations vs. their pre-complexation with an anionic chelator. J Solid State Chem. https://doi.org/10.1016/j.jssc.2006.03.029

    Article  Google Scholar 

  47. Shahedgharahshiran V, Yousefpour M (2018) Synthesis and characterization of Zr-promoted Ni–Co bimetallic catalyst supported OMC and investigation of its catalytic performance in steam reforming of ethanol. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2018.02.139

    Article  Google Scholar 

  48. Wang Z, Wang C, Chen S, Liu Y (2014) Co-Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2014.01.151

    Article  Google Scholar 

  49. Tarditti AM, Barroso MN, Galetti AE, Gomez MF, Arrua LA, Cornaglia L, Abello MC (2014) XPS study of the surface properties and Ni particle size determination of Ni-supported catalysts. Surf Interface Anal. https://doi.org/10.1002/sia.5549

    Article  Google Scholar 

  50. Moraes TS, Neto RCR, Ribeiro MC, Mattos LV, Kourtelesis M, Verykios X, Noronha FB (2015) Effects of Ceria morphology on catalytic performance of Ni/CeO2 catalysts for low temperature steam reforming of ethanol. Top Catal. https://doi.org/10.1007/s11244-015-0369-x

    Article  Google Scholar 

  51. Galetti AE, Gomez MF, Arrúa LA, Abello MC (2008) Hydrogen production by ethanol reforming over NiZnAl catalysts: influence of Ce addition on carbon deposition. App Catal A. https://doi.org/10.1016/j.apcata.2008.06.039

    Article  Google Scholar 

  52. Barroso MN, Gomez MF, Arrúa LA, Abello MC (2014) Co catalysts modified by rare earths (La, Ce or Pr) for hydrogen production from ethanol. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2013.12.043

    Article  Google Scholar 

  53. Galetti AE, Gómez MF, Arrúa LA, Abello MC (2011) Ethanol steam reforming over Ni/ZnAl2O4–CeO2. Influence of calcination atmosphere and nature of catalytic precursor. Appl Catal A. https://doi.org/10.1016/j.apcata.2011.09.006

    Article  Google Scholar 

Download references

Acknowledgements

To the Universidad Nacional de San Luis and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for financial support. The authors wish to thank Dr. Cristina Abello for helpful discussions and M. Gomez for participating in experimental work. Furthermore, L. Romero Castro is grateful to the UNAN Managua-Nicaragua for the scholarship awarded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana N. Barroso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero C., L., Moreno, M.S., Galetti, A.E. et al. Ni–Co Bimetallic Catalysts for Hydrogen Production by Steam Reforming Ethanol. Top Catal 65, 1427–1439 (2022). https://doi.org/10.1007/s11244-022-01632-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01632-3

Keywords

Navigation