Skip to main content
Log in

Toluene Adsorption on CeO2 (111) Studied by FTIR and DFT

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The adsorption of toluene on cerium oxide was investigated by using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations. It is shown that the toluene molecule undergoes dissociative adsorption with the loss of a hydrogen atom from the methyl group and the generation of both, a benzyl (C6H5–CH2) and a surface hydroxyl species. Characteristic infrared signals are observed due to the formation of a methylene group at 2800 cm−1 (ν CH2) and 1300 cm−1 (δ CH2). All vibrational modes were identified combining DFT calculations of the optimized system and experimental evidences. An adsorbed stable benzyl structure was identified with a binding energy of about − 0.65 eV, which supports the experimental findings. Temperature programmed surface reaction followed by DRIFTS and mass spectrometry showed that benzyl species are oxidized by lattice oxygen to benzoate, formate and, finally, to CO and CO2. Understanding the reactivity of ceria surfaces is key to improve the performance of combustion catalysts for volatile organic compounds abatement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z (2019) Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev 119:4471–4568. https://doi.org/10.1021/acs.chemrev.8b00408

    Article  CAS  PubMed  Google Scholar 

  2. Wang Q, Yeung KL, Bañares MA (2020) Ceria and its related materials for VOC catalytic combustion: a review. Catal Today 356:141–154. https://doi.org/10.1016/j.cattod.2019.05.016

    Article  CAS  Google Scholar 

  3. Fornero EL, Bosco M, Aguirre A, Bonivardi A, Collins SE (2021) Highly disperse CeO2 nanoparticles on MgO hexagonal plates as oxidation catalyst. Appl Catal A 623:118282. https://doi.org/10.1016/j.apcata.2021.118282

    Article  CAS  Google Scholar 

  4. Aguirre A, Fornero EL, Villarreal A, Collins SE (2021) Identification of key reaction intermediates during toluene combustion on a Pd/CeO2 catalyst using operando modulated DRIFT spectroscopy. Catal Today. https://doi.org/10.1016/j.cattod.2021.09.009

    Article  Google Scholar 

  5. Schärringer P, Müller TE, Jentys A, Lercher JA (2009) Identification of reaction intermediates during hydrogenation of CD3CN on Raney-Co. J Catal 263:34–41. https://doi.org/10.1016/j.jcat.2009.01.009

    Article  CAS  Google Scholar 

  6. Mi R, Li D, Hu Z, Yang RT (2021) Morphology effects of CeO2 nanomaterials on the catalytic combustion of toluene: a combined kinetics and diffuse reflectance infrared Fourier transform spectroscopy study. ACS Catal 11:7876–7889. https://doi.org/10.1021/acscatal.1c01981

    Article  CAS  Google Scholar 

  7. López JM, Gilbank AL, García T, Solsona B, Agouram S, Torrente-Murciano L (2015) The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Appl Catal B 174–175:403–412. https://doi.org/10.1016/j.apcatb.2015.03.017

    Article  CAS  Google Scholar 

  8. Su Z, Yang W, Wang C, Xiong S, Cao X, Peng Y, Si W, Weng Y, Xue M, Li J (2020) Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion. Environ Sci Technol 54:12684–12692. https://doi.org/10.1021/acs.est.0c03981

    Article  CAS  PubMed  Google Scholar 

  9. Su Z, Si W, Liu H, Xiong S, Chu X, Yang W, Peng Y, Chen J, Cao X, Li J (2021) Boosting the catalytic performance of CeO2 in toluene combustion via the Ce–Ce homogeneous interface. Environ Sci Technol 55:12630–12639. https://doi.org/10.1021/acs.est.1c03999

    Article  CAS  PubMed  Google Scholar 

  10. Trovarelli A (2002) Catalysis by ceria and related materials. Imperial College Press, World Scientific Publishing Co., London

  11. Widmann D, Krautsieder A, Walter P, Brückner A, Behm RJ (2016) How temperature affects the mechanism of CO oxidation on Au/TiO2: a combined EPR and TAP reactor study of the reactive removal of TiO2 surface lattice oxygen in Au/TiO2 by CO. ACS Catal 6:5005–5011. https://doi.org/10.1021/acscatal.6b01219

    Article  CAS  Google Scholar 

  12. Aguirre A, Collins SE (2013) Selective detection of reaction intermediates using concentration-modulation excitation DRIFT spectroscopy. Catal Today 205:34–40. https://doi.org/10.1016/j.cattod.2012.08.020

    Article  CAS  Google Scholar 

  13. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561. https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  14. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  15. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269. https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  16. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  17. Kresse G, Hafner J (1994) Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J Phys Condens Matter 6:8245–8257. https://doi.org/10.1088/0953-8984/6/40/015

    Article  CAS  Google Scholar 

  18. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  19. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57:1505–1509. https://doi.org/10.1103/PhysRevB.57.1505

    Article  CAS  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 78:1396–1396. https://doi.org/10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  21. Bhasker-Ranganath S, Rahman MS, Zhao C, Calaza F, Wu Z, Xu Y (2021) Elucidating the mechanism of ambient-temperature aldol condensation of acetaldehyde on ceria. ACS Catal 11:8621–8634. https://doi.org/10.1021/acscatal.1c01216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  23. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  24. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  25. Kwon YJ, Son DH, Ahn SJ, Kim MS, Kim K (1994) Vibrational spectroscopic investigation of benzoic acid adsorbed on silver. J Phys Chem 98:8481–8487. https://doi.org/10.1021/j100085a030

    Article  CAS  Google Scholar 

  26. Davydov A (2003) Molecular spectroscopy of oxide catalyst surfaces. John Wiley & Sons, Ltd. https://doi.org/10.1002/0470867981

  27. Chang CC, Kokes RJ (1975) Base catalyzed adsorption of toluene by zinc oxide. J Catal 38:491–493. https://doi.org/10.1016/0021-9517(75)90114-1

    Article  CAS  Google Scholar 

  28. Davydov AA (1988) Nature of oxide surface sites and their role in formation of toluene complexes. Mater Chem Phys 19:97–112. https://doi.org/10.1016/0254-0584(88)90003-X

    Article  CAS  Google Scholar 

  29. Badri A, Binet C, Lavalley J-C (1996) An FTIR study of surface ceria hydroxy groups during a redox process with H2. J Chem Soc Faraday Trans 92:4669. https://doi.org/10.1039/ft9969204669

    Article  CAS  Google Scholar 

  30. Binet C, Daturi M, Lavalley J-C (1999) IR study of polycrystalline ceria properties in oxidised and reduced states. Catal Today 50:207–225. https://doi.org/10.1016/S0920-5861(98)00504-5

    Article  CAS  Google Scholar 

  31. Lustemberg PG, Bosco MV, Bonivardi A, Busnengo HF, Ganduglia-Pirovano MV (2015) Insights into the nature of formate species in the decomposition and reaction of methanol over cerium oxide surfaces: a combined infrared spectroscopy and density functional theory study. J Phys Chem C 119:21452–21464. https://doi.org/10.1021/acs.jpcc.5b05070

    Article  CAS  Google Scholar 

  32. Fernández-Torre D, Kośmider K, Carrasco J, Ganduglia-Pirovano MV, Pérez R (2012) Insight into the adsorption of water on the clean CeO2 (111) surface with van der Waals and hybrid density functionals. J Phys Chem C 116:13584–13593. https://doi.org/10.1021/jp212605g

    Article  CAS  Google Scholar 

  33. Vecchietti J, Collins S, Delgado JJ, Małecka M, Rio E, Chen X, Bernal S, Bonivardi A (2011) Gold catalysts supported on cerium-gallium mixed oxide for the carbon monoxide oxidation and water gas shift reaction. Top Catal 54:201–209. https://doi.org/10.1007/s11244-011-9653-6

    Article  CAS  Google Scholar 

  34. Bellamy LJ (1975) The infra-red spectra of complex molecules. Springer, Dordrecht

    Book  Google Scholar 

  35. Miyata H, Mukai T, Ono T, Ohno T, Hatayama F (1988) Fourier-transform infrared investigation of intermediates in the oxidation of toluene on V2O5/TiO2. J Chem Soc Faraday Trans 1 84:2465–2475. https://doi.org/10.1039/F19888402465

    Article  CAS  Google Scholar 

  36. Busca G, Lorenzelli V (1982) Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater Chem 7:89–126. https://doi.org/10.1016/0390-6035(82)90059-1

    Article  CAS  Google Scholar 

  37. Kondo J, Ding N, Maruya K, Domen K, Yokoyama T, Fujita N, Maki T (1993) Infrared study of hydrogenation of benzoic acid to benzaldehyde on ZrO2 catalysts. Bull Chem Soc Jpn 66:3085–3090. https://doi.org/10.1246/bcsj.66.3085

    Article  CAS  Google Scholar 

  38. Lu A, Sun H, Zhang N, Che L, Shan S, Luo J, Zheng J, Yang L, Peng D-L, Zhong C-J, Chen B (2019) Surface partial-charge-tuned enhancement of catalytic activity of platinum nanocatalysts for toluene oxidation. ACS Catal 9:7431–7442. https://doi.org/10.1021/acscatal.9b01776

    Article  CAS  Google Scholar 

  39. Mo S, Zhang Q, Li J, Sun Y, Ren Q, Zou S, Zhang Q, Lu J, Fu M, Mo D, Wu J, Huang H, Ye D (2020) Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS. Appl Catal B 264:118464. https://doi.org/10.1016/j.apcatb.2019.118464

    Article  CAS  Google Scholar 

  40. Yang W, Su Z, Xu Z, Yang W, Peng Y, Li J (2020) Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates. Appl Catal B. https://doi.org/10.1016/j.apcatb.2019.118150

    Article  Google Scholar 

  41. Giordano F, Trovarelli A, de Leitenburg C, Giona M (2000) A model for the temperature-programmed reduction of low and high surface area ceria. J Catal 193:273–282. https://doi.org/10.1006/jcat.2000.2900

    Article  CAS  Google Scholar 

  42. Wang Y, Deng W, Wang Y, Guo L, Ishihara T (2018) A comparative study of the catalytic oxidation of chlorobenzene and toluene over Ce–Mn oxides. Mol Catal 459:61–70. https://doi.org/10.1016/j.mcat.2018.08.022

    Article  CAS  Google Scholar 

  43. Sun H, Liu Z, Chen S, Quan X (2015) The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene. Chem Eng J 270:58–65. https://doi.org/10.1016/j.cej.2015.02.017

    Article  CAS  Google Scholar 

  44. Mirji SA, Halligudi SB, Sawant DP, Patil KR, Gaikwad AB, Pradhan SD (2006) Adsorption of toluene on Si(1 0 0)/SiO2 substrate and mesoporous SBA-15. Colloids Surf A 272:220–226. https://doi.org/10.1016/j.colsurfa.2005.07.019

    Article  CAS  Google Scholar 

  45. Besselmann S, Löffler E, Muhler M (2000) On the role of monomeric vanadyl species in toluene adsorption and oxidation on V2O5/TiO2 catalysts: a Raman and in situ DRIFTS study. J Mol Catal A 162:401–411. https://doi.org/10.1016/s1381-1169(00)00307-1

    Article  Google Scholar 

  46. Gordymova TA, Budneva AA, Davydov AA (1982) IR spectra of toluene adsorbed on γ-Al2/O3. React Kinet Catal 20:113–117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) [Grant No. PIP-2014-11220130100086CO] and Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (ANPCyT) [Grant Nos. PICT-2018-01332 and PICT-2017-1342].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Collins.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heredia, L., Colombo, E., Quaino, P. et al. Toluene Adsorption on CeO2 (111) Studied by FTIR and DFT. Top Catal 65, 934–943 (2022). https://doi.org/10.1007/s11244-022-01625-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01625-2

Keywords

Navigation