Skip to main content
Log in

Steady State Kinetic Study of the Formic Acid Electrooxidation Reaction on Iridium in a Flow Cell

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The formic acid electrooxidation reaction was evaluated on an iridium electrode at room temperature in 0.5 M HCOOH + 0.5 M H2SO4 solution, using a flow cell. Chronoamperometric experiments allowed establishing the dependence of the electrocatalytic activity on potential, which reaches a maximum around 0.55 V. The open circuit chronopotentiometric transient was also measured. Moreover, the voltammetric stripping profile was also obtained at each analysed potential, enabling the evaluation of the presence of adsorbed carbon monoxide (COad) on the electrode surface through its electrooxidation charge. It was found that it is high at low potentials, and then it decays vanishing at 0.5 V. From the analysis of the results obtained, it was concluded that COad is originated from the spontaneous dissociative adsorption of HCOOH, producing the inhibition of reaction sites at low potentials. Meanwhile the water discharge generates adsorbed hydroxil (OHad), which inhibits the reaction at high potentials. A reaction mechanism was proposed and discussed, and the Ir electrocatalytic activity was compared with those of platinum, palladium and rhodium, evaluated under similar experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rees NV, Compton RG (2011) Sustainable energy: a review of formic acid electrochemical fuel cells. J Solid State Electrochem 15:2095–2100. https://doi.org/10.1007/s10008-011-1398-4

    Article  CAS  Google Scholar 

  2. Podlovchenko BI, Petrii OA, Frumkin AN, Lal H (1966) The behaviour of a platinized-platinum electrode in solution of alcohols containing more than one carbon atom, aldehydes and formic acid. J Electroanal Chem 11:12–25. https://doi.org/10.1016/0022-0728(66)80053-0

    Article  CAS  Google Scholar 

  3. Capon A, Parsons R (1973) The oxidation of formic acid on noble metal electrodes: I. Review of previous work. J Electroanal Chem Interf Electrochem 44:1–7. https://doi.org/10.1016/S0022-0728(73)80508-X

    Article  CAS  Google Scholar 

  4. Capon A, Parsons R (1973) The oxidation of formic acid on noble metal electrodes: II. A comparison of the behavior of pure electrodes. J Electroanal Chem Interf Electrochem 44:239–254. https://doi.org/10.1016/S0022-0728(73)80250-5

    Article  CAS  Google Scholar 

  5. Smolin AV, Podlovchenko BI, Maksimov YM (1997) Electroxidation of formic acid on palladium electrodeposits in sulfuric acid electrolytes. Rus J Electrochem 33:440–446

    CAS  Google Scholar 

  6. Gladysheva TD, Podlovchenko BI (2003) Adsorption peculiarities of carbon monoxide on iridium electrodeposits. Rus J Electrochem 39:796–801. https://doi.org/10.1023/A:1024842522545

    Article  CAS  Google Scholar 

  7. Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132. https://doi.org/10.1016/j.jpowsour.2008.03.075

    Article  CAS  Google Scholar 

  8. Chen Y, Jusys Z, Behm RJ (2007) Kinetic isotope effects in complex reaction networks: formic acid electro-oxidation. ChemPhysChem 8:380–385. https://doi.org/10.1002/cphc.200600520

    Article  CAS  PubMed  Google Scholar 

  9. Rezaei M, Tabaian SH, Haghshenas DF (2014) The role of electrodeposited Pd catalyst loading on the mechanisms of formic acid electro-oxidation. Electrocatalysis 5:193–203. https://doi.org/10.1007/s12678-013-0181-y

    Article  CAS  Google Scholar 

  10. Jeon H, Jeong B, Joo J, Lee J (2015) Electrocatalytic oxidation of formic acid: closing the gap between fundamental study and technical applications. Electrocatalysis 6:20–32. https://doi.org/10.1007/s12678-014-0226-x

    Article  CAS  Google Scholar 

  11. Brimaud S, Solla-Gullón J, Weber I, Feliu JM, Behm RJ (2014) Formic acid electrooxidation on noble-metal electrodes: role and mechanistic implications of pH, surface structure, and anion adsorption. ChemElectroChem 1:1075–1083. https://doi.org/10.1002/celc.201400011

    Article  CAS  Google Scholar 

  12. Luque GC, Gennero de Chialvo MR, Chialvo AC (2019) Evidences of CO spillover at a Pt/Pd bimetallic interface during the formic acid oxidation reaction. Mat Chem Phys 232:34–38. https://doi.org/10.1016/j.matchemphys.2019.04.056

    Article  CAS  Google Scholar 

  13. Okamoto H, Numata Y, Gojuki T, Mukouyama Y (2014) Different behaviour of adsorbed bridge-bonded formate from that of current in the oxidation of formic acid on platinum. Electrochim Acta 116:263–270. https://doi.org/10.1016/j.electacta.2013.11.053

    Article  CAS  Google Scholar 

  14. Joo J, Uchida T, Cuesta A, Koper MTM, Osawa M (2014) The effect of pH on the electrocatalytic oxidation of formic acid/formate on platinum: a mechanistic study by surface-enhanced infrared spectroscopy coupled with cyclic voltammetry. Electrochim Acta 129:127–136. https://doi.org/10.1016/j.electacta.2014.02.040

    Article  CAS  Google Scholar 

  15. Cuesta A, Cabello G, Hartl FW, Escudero-Escribano M, Vaz-Domínguez C, Kibler LA, Osawa M, Gutiérrez MC (2013) Electrooxidation of formic acid on gold: a ATR-SEIRAS study of the role of adsorbate formate. Catal Today 202:79–86. https://doi.org/10.1016/j.cattod.2012.04.022

    Article  CAS  Google Scholar 

  16. Samjeské G, Miki A, Ye S, Osawa M (2006) Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy. J Phys Chem B 110:16559–16566. https://doi.org/10.1021/jp061891l

    Article  CAS  PubMed  Google Scholar 

  17. Beltramo GL, Shubina TE, Koper MTM (2005) Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface-enhanced Raman spectroscopy and DFT. ChemPhysChem 6(2005):2597–2606. https://doi.org/10.1002/cphc.200500198

    Article  CAS  PubMed  Google Scholar 

  18. Xu Q, Pobelov IV, Wandlowski T, Kuzume A (2017) ATR-SEIRAS study of formic acid adsorption and oxidation on Rh modified Au(111–25 nm) film electrodes in 0.1 M H2SO4. J Electroanal Chem 793:70–76. https://doi.org/10.1016/j.jelechem.2016.09.049

    Article  CAS  Google Scholar 

  19. Pronkin S, Hara M, Wandlowski T (2006) Electrocatalytic properties of Au(111)-Pd quasi-single-crystal film electrode as probed by ATR-SEIRAS. Russ J Electrochem 42:1177–1192. https://doi.org/10.1134/S1023193506110048

    Article  CAS  Google Scholar 

  20. Miyake H, Okada T, Samjeské G, Osawa M (2008) Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy. Phys Chem Chem Phys 10:3662–3669. https://doi.org/10.1039/B805955A

    Article  CAS  PubMed  Google Scholar 

  21. Chen YX, Heinen M, Jusys Z, Behm RJ (2006) Kinetics and mechanism of the electrooxidation of formic acid. Spectroelectrochemical studies in a flow cell. Angew Chem Int Ed 45:981–985. https://doi.org/10.1002/anie.200502172

    Article  CAS  Google Scholar 

  22. Luque GC, Gennero de Chialvo MR, Chialvo AC (2017) Kinetic study of the formic acid oxidation on steady state using a flow cell. J Electrochem Soc 164:H748–H754. https://doi.org/10.1149/2.0581712jes

    Article  CAS  Google Scholar 

  23. Gennero de Chialvo MR, Luque GC, Chialvo AC (2018) Formic acid electrooxidation on platinum, resolution of the kinetic mechanism in steady state and evaluation of the kinetic constants. Chemistry Select 3:9768–9772. https://doi.org/10.1002/slct.201801725

    Article  CAS  Google Scholar 

  24. Luque GC, Montero MA, Gennero de Chialvo MR, Chialvo AC (2020) Study of the formic acid electrooxidation on rhodium on steady state using a flow cell: potential dependence of the CO Coverage. Electrocatalysis 11:405–412. https://doi.org/10.1007/s12678-020-00599-7

    Article  CAS  Google Scholar 

  25. Montero MA, Luque GC, Gennero de Chialvo MR, Chialvo AC (2020) Kinetic evaluation of the formic acid electrooxidation on steady state on palladium using a flow cell. J Electroanal Chem 879:114777. https://doi.org/10.1016/j.jelechem.2020.114777

    Article  CAS  Google Scholar 

  26. Luque GC, Gennero de Chialvo MR, Chialvo AC (2016) Influence of spontaneous decomposition on the electrochemical formic acid oxidation on nanostructured palladium electrode. Electrochem Commun 70:69–72. https://doi.org/10.1016/j.elecom.2016.07.008

    Article  CAS  Google Scholar 

  27. Motoo S, Furuya N (1986) Electrochemistry o iridium single crystal surfaces part 1. Structural effect on formic acid oxidation and poison formation on Ir (111), (100) and (110). J Electroanal Chem 197:209–218. https://doi.org/10.1016/0022-0728(86)80150-4

    Article  CAS  Google Scholar 

  28. Zagal JH, Vera RM, Ureta-Zañartu MS (1990) Electro-oxidation of formic acid at iridium electrodes. Role of deposited heavy metals. J Electroanal Chem Interf Electrochem 291:123–139. https://doi.org/10.1016/0022-0728(90)87181-I

    Article  CAS  Google Scholar 

  29. Ferrer JE, Ll V (1993) Electro-oxidation of formic acid on the iridium electrode as a function of pH. Electrochim Acta 38:1631–1636. https://doi.org/10.1016/0013-4686(93)85052-Z

    Article  CAS  Google Scholar 

  30. Gomez R, Weaver MJ (1997) Electrochemical infrared studies of monocrystalline iridium surfaces part I: electrooxidation of formic acid and methanol. J Electroanal Chem 435:205–215. https://doi.org/10.1016/S0022-0728(97)00304-5

    Article  CAS  Google Scholar 

  31. Mrozek MF, Luo H, Weaver MJ (2000) Formic acid electrooxidation on platinum-group metals: is adsorbed carbon monoxide solely a catalytic poison? Langmuir 16:8463–8469. https://doi.org/10.1021/la000760n

    Article  CAS  Google Scholar 

  32. Montero MA, Gennero de Chialvo MR, Chialvo AC (2016) Effect of the electrochemically grown hydrous oxide on the hydrogen electrode reaction on iridium electrode. J Electroanal Chem 783:106–111. https://doi.org/10.1016/j.jelechem.2016.11.037

    Article  CAS  Google Scholar 

  33. Brites Helú MA, Gennero de Chialvo MR, Chialvo AC, Fernández JL (2014) Nanoparticle ensemble electrodes: fabrication by short-pulse sputtering and characterization by scanning probe microscopy and voltammetry. J Solid State Electrochem 18:2233–2243. https://doi.org/10.1007/s10008-014-2465-4

    Article  CAS  Google Scholar 

  34. Montero MA, Fernandez JL, Gennero de Chialvo MR, Chialvo AC (2013) Kinetic study of the hydrogen oxidation reaction on nanostructured iridium electrodes in acid solutions. J Phys Chem C 217:25269–25275. https://doi.org/10.1021/jp407951u

    Article  CAS  Google Scholar 

  35. Aramata A, Yamazaki T, Kunimatsu K, Enyo M (1987) Electrooxidation of methanol on iridium in acidic solutions: electrocatalysis and surface characterization by infrared spectroscopy. J Phys Chem 91:2309–2314. https://doi.org/10.1021/j100293a020

    Article  CAS  Google Scholar 

  36. Mozota J, Conway BE (1983) Surface and bulk processes at oxidized iridium electrodes—I. Monolayer stage and transition to reversible multilayer oxide film behaviour. Electrochim Acta 28:1–8. https://doi.org/10.1016/0013-4686(83)85079-8

    Article  CAS  Google Scholar 

  37. Woods R (1974) Hydrogen adsorption on platinum, iridium and rhodium electrodes at reduced temperatures and the determination of the real surface area. J Electroanal Interf Electrochem 49:217–226. https://doi.org/10.1016/S0022-0728(74)80229-9

    Article  CAS  Google Scholar 

  38. Jiang X, Chang SC, Weaver MJ (1991) In situ infrared spectroscopy of carbon monoxide adsorbed at iridium (111)-aqueous interfaces: double-layer effects on the adlayer structure. J Phys Chem 95:7453–7459. https://doi.org/10.1021/j100172a062

    Article  CAS  Google Scholar 

  39. Wei RL, Miao MY, Liu Y, Jiang XL, Yang YY (2021) Electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy insights into CO adsorption and oxidation on iridium surface. J Phys Chem C 125:12086–12093. https://doi.org/10.1021/acs.jpcc.1c00519

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 2017-1340), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 0311) and Universidad Nacional del Litoral (UNL, CAI + D 2016 PIC 018LI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel C. Chialvo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montero, M.A., Gennero de Chialvo, M.R. & Chialvo, A.C. Steady State Kinetic Study of the Formic Acid Electrooxidation Reaction on Iridium in a Flow Cell. Top Catal 65, 788–797 (2022). https://doi.org/10.1007/s11244-022-01603-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01603-8

Keywords

Navigation