Skip to main content
Log in

Mechanistic aspects of the comparative oscillatory electrochemical oxidation of formic acid and methanol on platinum electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The characteristics of the electrochemical oscillations that emerge along the catalytic oxidation of small organic molecules critically depend on the coverage and nature of adsorbates. Herein we report experimental results on the electro-oxidation of formic acid and methanol on platinum and platinum-modified electrodes, and under conventional, i.e., cyclic voltammetry, and oscillatory conditions. The investigation was focused on the role played by surface-free sites and the presence of a step with a short-lived specie adsorbed on electrode surface. In order to reduce the coverage of adsorbed species, and thus to increase the main reaction pathway, chronoamperometry in platinum oxide region followed by potential sweeps or the adsorption of ad atoms, like tin, to mitigate the surface poisoning was adopted. Overall, those strategies considerably improved the electrochemical oxidation of formic acid, but had no effect for methanol. Our results show that the efficiency of formic acid electro-oxidation is preferred powered, compared with methanol, on a less poisoned electrode surface, which is obtained through a self-cleaning process driven by the oscillatory electro-oxidation of organic molecules. These results are rationalized in terms of peculiarities of the reaction mechanisms of both systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hachkar M, Beden B, Lamy C (1990) Oscillating electrocatalytic systems. J Electroanal Chem Interfacial Electrochem 287(1):81–98. https://doi.org/10.1016/0022-0728(90)87161-C

    Article  CAS  Google Scholar 

  2. Krischer K, Varela H (2003) Oscillations and other dynamic instabilities. In: Handbook of Fuel Cells – Fundamentals, Technology and Applications. pp 679–701

  3. Krewer U, Vidakovic-Koch T, Rihko-Struckmann L (2011) Electrochemical oxidation of carbon-containing fuels and their dynamics in low-temperature fuel cells. ChemPhysChem 12(14):2518–2544. https://doi.org/10.1002/cphc.201100095

    Article  CAS  PubMed  Google Scholar 

  4. Maiyalagan T, Saji VS (2017) Electrocatalysts for low temperature fuel cells. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Book  Google Scholar 

  5. Orlik M (2012) Self-Organization in Electrochemical Systems I - general principles of self-organization. Temporal instabilities, 1st ed. Springer

  6. Cabral MF, Nagao R, Sitta E, Eiswirth M, Varela H (2012) Mechanistic aspects of the linear stabilization of non-stationary electrochemical oscillations. Phys Chem Chem Phys 15(5):19–22. https://doi.org/10.1039/c2cp42890c

    Article  CAS  Google Scholar 

  7. Perini N, Batista BC, Angelo ACD, Epstein IR, Varela H (2014) Long-lasting oscillations in the electro-oxidation of formic acid on PtSn intermetallic surfaces. ChemPhysChem 15(9):1753–1760. https://doi.org/10.1002/cphc.201301186

    Article  CAS  PubMed  Google Scholar 

  8. Delmonde MVF, Sallum LF, Perini N, Gonzalez ER, Schlögl R, Varela H (2016) Electrocatalytic efficiency of the oxidation of small organic molecules under oscillatory regime. J Phys Chem C 120(39):22365–22374. https://doi.org/10.1021/acs.jpcc.6b06692

    Article  CAS  Google Scholar 

  9. Nagao R, Sitta E, Varela H (2010) Stabilizing nonstationary electrochemical time series. J Phys Chem C 114(50):22262–22268. https://doi.org/10.1021/jp109554r

    Article  CAS  Google Scholar 

  10. Nascimento MA, Nagao R, Eiswirth M, Varela H (2014) Coupled slow and fast surface dynamics in an electrocatalytic oscillator: model and simulations. J Chem Phys 141(23):234701. https://doi.org/10.1063/1.4903172

    Article  CAS  PubMed  Google Scholar 

  11. Zülke AA, Varela H (2016) The effect of temperature on the coupled slow and fast dynamics of an electrochemical oscillator. Sci Rep 6(1):24553. https://doi.org/10.1038/srep24553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hartl FW, Zülke AA, Fonte BJ, Varela H (2017) Temperature dependence of the evolving oscillations along the electrocatalytic oxidation of methanol. J Electroanal Chem 800:99–105. https://doi.org/10.1016/j.jelechem.2016.11.032

    Article  CAS  Google Scholar 

  13. Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327(1-2):353–376. https://doi.org/10.1016/0022-0728(92)80162-W

    Article  CAS  Google Scholar 

  14. Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1993) Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. J Phys Chem 97(46):12020–12029. https://doi.org/10.1021/j100148a030

    Article  CAS  Google Scholar 

  15. Marković NM, Gasteiger HA, Ross PN et al (1995) Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces. Electrochim Acta 40(1):91–98. https://doi.org/10.1016/0013-4686(94)00241-R

    Article  Google Scholar 

  16. Jusys Z, Behm RJ (2009) Methanol, Formaldehyde, and Formic Acid Adsorption/Oxidation on a Carbon-Supported Pt Nanoparticle Fuel Cell Catalyst: A Comparative Quantitative DEMS Study. In: Koper MTM (ed) Fuel Cell Catalysis - A Surface Science Approach. Wiley-VCH Verlag GmbH & Co. KGaA, pp 411–430

  17. Joo J, Uchida T, Cuesta A, Koper MTM, Osawa M (2013) Importance of acid–base equilibrium in electrocatalytic oxidation of formic acid on platinum. J Am Chem Soc 135(27):9991–9994. https://doi.org/10.1021/ja403578s

    Article  CAS  PubMed  Google Scholar 

  18. Oliveira CP, Lussari NV, Sitta E, Varela H (2012) Oscillatory electro-oxidation of glycerol on platinum. Electrochim Acta 85:674–679. https://doi.org/10.1016/j.electacta.2012.08.087

    Article  CAS  Google Scholar 

  19. Okamoto H, Kon W, Mukouyama Y (2005) Five current peaks in voltammograms for oxidations of formic acid, formaldehyde, and methanol on platinum. J Phys Chem B 109(32):15659–15666. https://doi.org/10.1021/jp0516036

    Article  CAS  PubMed  Google Scholar 

  20. Calderón-Cárdenas A, Hartl FW, Gallas JAC, Varela H (2019) Modeling the triple-path electro-oxidation of formic acid on platinum: cyclic voltammetry and oscillations. Catal Today 1–9. https://doi.org/10.1016/j.cattod.2019.04.054

  21. Brimaud S, Solla-Gullón J, Weber I, Feliu JM, Behm RJ (2014) Formic acid Electrooxidation on Noble-metal electrodes: role and mechanistic implications of pH, surface structure, and anion adsorption. ChemElectroChem 1(6):1075–1083. https://doi.org/10.1002/celc.201400011

    Article  CAS  Google Scholar 

  22. Freire JG, Calderón-Cárdenas A, Varela H, Gallas JAC (2020) Phase diagrams and dynamical evolution of the triple-pathway electro-oxidation of formic acid on platinum. Phys Chem Chem Phys 22(3):1078–1091. https://doi.org/10.1039/C9CP04324A

    Article  CAS  PubMed  Google Scholar 

  23. Nagao R, Cantane DA, Lima FHB, Varela H (2012) The dual pathway in action: decoupling parallel routes for CO2 production during the oscillatory electro-oxidation of methanol. Phys Chem Chem Phys 14(23):8294–8298. https://doi.org/10.1039/c2cp00037g

    Article  CAS  PubMed  Google Scholar 

  24. Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2004) New mechanistic aspects of methanol oxidation. J Electroanal Chem 571(2):273–282. https://doi.org/10.1016/j.jelechem.2004.05.016

    Article  CAS  Google Scholar 

  25. Wang H, Löffler T, Baltruschat H (2001) Formation of intermediates during methanol oxidation: a quantitative DEMS study. J Appl Electrochem 31(7):759–765. https://doi.org/10.1023/A:1017539411059

    Article  CAS  Google Scholar 

  26. Boscheto E, Batista BC, Lima RB, Varela H (2010) A surface-enhanced infrared absorption spectroscopic (SEIRAS) study of the oscillatory electro-oxidation of methanol on platinum. J Electroanal Chem 642(1):17–21. https://doi.org/10.1016/j.jelechem.2010.01.026

    Article  CAS  Google Scholar 

  27. Martins AL, Batista BC, Sitta E, Varela H (2008) Oscillatory instabilities during the electrocatalytic oxidation of methanol on platinum. J Braz Chem Soc 19(4):679–687. https://doi.org/10.1590/S0103-50532008000400011

    Article  CAS  Google Scholar 

  28. Okamoto H, Kon W, Mukouyama Y (2004) Stationary voltammogram for oxidation of formic acid on polycrystalline platinum. J Phys Chem B 108(14):4432–4438. https://doi.org/10.1021/jp031052o

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner LR (2001) Electrochemical Methods: Fundamentals and Applicantions

  30. Chang S-C, Ho Y, Eaver MJ (1992) Applications of real-time infrared spectroscopy to electrocatalysis at bimetallic surfaces. Surf Sci 265(1-3):81–94

    Article  CAS  Google Scholar 

  31. Wang K, Gasteiger HA, Markovic NM, Ross PN (1996) On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces. Electrochim Acta 41(16):2587–2593. https://doi.org/10.1016/0013-4686(96)00079-5

    Article  CAS  Google Scholar 

  32. Furuya N, Motoo S (1979) Electrochemical behavior of ad-atoms and their effect on hydrogen evolution Part-4. Tin and lead ad-atoms on platinum. J Electroanal Chem 98:195–202

    Article  Google Scholar 

  33. Frelink T, Visscher W, van Veen JAR (1995) On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 335:353–360. https://doi.org/10.1016/0039-6028(95)00412-2

    Article  CAS  Google Scholar 

  34. Perini N, Sitta E, Angelo ACD, Varela H (2013) Electrocatalytic activity under oscillatory regime: the electro-oxidation of formic acid on ordered Pt3Sn intermetallic phase. Catal Commun 30:23–26. https://doi.org/10.1016/j.catcom.2012.10.019

    Article  CAS  Google Scholar 

Download references

Funding

NP and CR are indebted to Prof. Robert Schlögl and to the Max Planck Institute for Chemical Energy Conversion. MVLD (Grant No. 160511/2011-9) and HV (Grant No. 306060/2017-5) acknowledges Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support. NP (Grant No. 2015/18274-5) and HV (Grants Nos. 2012/24152-1 and 2013/16930-7) acknowledge São Paulo Research Foundation (FAPESP) for financial support. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickson Perini.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 646 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perini, N., Delmonde, M.V.F., Ranjan, C. et al. Mechanistic aspects of the comparative oscillatory electrochemical oxidation of formic acid and methanol on platinum electrode. J Solid State Electrochem 24, 1811–1818 (2020). https://doi.org/10.1007/s10008-020-04609-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04609-y

Keywords

Navigation