Skip to main content
Log in

Robust and Efficient Pd–Cu Bimetallic Catalysts with Porous Structure for Formic Acid Oxidation and a Mechanistic Study of Electrochemical Dealloying

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

To obtain highly efficient and robust electrocatalysts for formic acid oxidation, PdxCuy/C binary catalysts with porous structures were successfully prepared via electrochemical dealloying. Catalysts with different Pd/Cu atomic ratios were characterized through transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, and X-ray diffraction. The optimized dealloyed Pd1Cu4/C catalyst with a porous structure displayed a catalytic activity of 2611 A g−1 and high stability (30.5% activity retention under repeated cyclic voltammetric (CV) patrol), whereas a commercial Pd/C-Aldrich benchmark showed a catalytic activity of 785 A g−1 and retained 16.5% activity. A detailed mechanistic study of electrochemical dealloying was performed. Under repeated CV patrol, Pd-enriched porous architectures evolved from Pd-poor surfaces, accompanied by successive Cu dissolution.

Graphical abstract

PdxCuy/C catalysts were fabricated via a one-pot hydrothermal approach for formic acid oxidation. Mechanism study on the electrochemical dealloying process revealed that the initial Pd-poor surface evolved into porous Pd-enriched architecture due to successive dissolution of Cu. The tentatively optimized D-Pd1Cu4/C catalyst registered the highest mass activity (2611 A g−-1) and specific activity (42.3 A m−-2), surpassing that of a commercial Pd/C benchmark (785 A g−-1, 25.7 A m−-2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Yan, X. Hu, G. Fu, L. Xu, J.M. Lee, Y. Tang, Facile synthesis of porous Pd3 Pt half-shells with rich “active sites” as efficient catalysts for formic acid oxidation. Small 14(13), 1703940 (2018)

    Article  Google Scholar 

  2. A. Zalineeva, C. Coutanceau, G. Jerkiewicz, Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen. Sci. Adv. 3, 1600542 (2017)

    Article  Google Scholar 

  3. A. Zalineeva, S. Baranton, C. Coutanceau, G. Jerkiewicz, Electrochemical behavior of unsupported shaped palladium nanoparticles. Langmuir 31(5), 1605–1609 (2015)

    Article  CAS  Google Scholar 

  4. V. Mazumder, S. Sun, Oleylamine-mediated synthesis of Pd nanoparticles for catalyticf ormic acid oxidation. J. Am. Chem. Soc. 131(13), 4588–4589 (2009)

    Article  CAS  Google Scholar 

  5. B.I. Podlovchenko, T.D. Gladysheva, Y.M. Maksimov, K.I. Maslakov, D.S. Volkov, Specific features of galvanic displacement of electrodeposited copper by palladium. Activity of Pd0(Cu) composite in FAOR. J. Electroanal. Chem. 840, 376–383 (2019)

    Article  CAS  Google Scholar 

  6. H. Wang, S. Yin, Y. Li, H. Yu, C. Li, K. Deng, Y. Xu, X. Li, H. Xue, L. Wang, One-step fabrication of tri-metallic PdCuAu nanothorn assemblies as an efficient catalyst for oxygen reduction reaction. J. Mater. Chem. A 6(8), 3642–3648 (2018)

    Article  CAS  Google Scholar 

  7. L. Lu, L. Shen, Y. Shi, T. Chen, G. Jiang, C. Ge, Y. Tang, Y. Chen, T. Lu, New insights into enhanced electrocatalytic performance of carbon supported Pd–Cu catalyst for formic acid oxidation. Electrochim. Acta 85, 187–194 (2012)

    Article  CAS  Google Scholar 

  8. N. Yang, Z. Zhang, B. Chen, Y. Huang, J. Chen, Z. Lai, Y. Chen, M. Sindoro, A.L. Wang, H. Cheng, Z. Fan, X. Liu, B. Li, Y. Zong, L. Gu, H. Zhang, Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 29(29), 1700769 (2017)

    Article  Google Scholar 

  9. Z. Liu, G. Fu, J. Li, Z. Liu, L. Xu, D. Sun, Y. Tang, Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Res. 11(9), 4686–4696 (2018)

    Article  CAS  Google Scholar 

  10. C. Li, Q. Yuan, B. Ni, T. He, S. Zhang, Y. Long, L. Gu, X. Wang, Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun 9(1), 3702 (2018)

    Article  Google Scholar 

  11. H. Xu, P. Song, F. Gao, Y. Shiraishi, Y. Du, Hierarchical branched platinum-copper tripods as highly active and stable catalysts. Nanoscale 10(17), 8246–8252 (2018)

    Article  CAS  Google Scholar 

  12. L.Y. Zhang, Y. Gong, D. Wu, G. Wu, B. Xu, L. Bi, W. Yuan, Z. Cui, Twisted palladium-copper nanochains toward efficient electrocatalytic oxidation of formic acid. J. Colloid Interf. Sci. 537, 366–374 (2019)

  13. S.R. Chowdhury, T. Maiyalagan, Enhanced electro-catalytic activity of nitrogen-doped reduced graphene oxide supported PdCu nanoparticles for formic acid electro-oxidation. Int. J. Hydrog. Energy 44(29), 14808–14819 (2019)

    Article  CAS  Google Scholar 

  14. D. Chen, P. Sun, H. Liu, J. Yang, Bimetallic Cu–Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction. J. Mater. Chem. A 5(9), 4421–4429 (2017)

    Article  CAS  Google Scholar 

  15. L. Gan, M. Heggen, S. Rudi, P. Strasser, Core-shell compositional fine structures of dealloyed Pt(x)Ni(1-x) nanoparticles and their impact on oxygen reduction catalysis. Nano Lett. 12(10), 5423–5230 (2012)

    Article  CAS  Google Scholar 

  16. Y. Ruizhi, S. Peter, F.T. Michael, Dealloying of Cu3Pt (111) studied by surface X-ray scattering. J. Phys. Chem. C 115, 9074 (2011)

    Article  Google Scholar 

  17. D. Wang, Y. Yu, H.L. Xin, R. Hovden, P. Ercius, J.A. Mundy, H. Chen, J.H. Richard, D.A. Muller, F.J. DiSalvo, H.D. Abruña, Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett. 12(10), 5230–5238 (2012)

    Article  CAS  Google Scholar 

  18. Y. Ruizhi, B. Weiyong, S. Peter, F.T. Michael, Dealloyed PdCu3 thin film electrocatalysts for oxygen reduction reaction. J. Power Sources 222, 169 (2013)

    Article  Google Scholar 

  19. F.U. Renner, A. Stierle, H. Dosch, D.M. Kolb, T.L. Lee, J. Zegenhagen, In situx-ray diffraction study of the initial dealloying and passivation ofCu3Au(111)during anodic dissolution. Phys. Rev. B 77(23), 235433 (2008)

    Article  Google Scholar 

  20. F.U. Renner, Y. Gründer, P.F. Lyman, J. Zegenhagen, In-situ X-ray diffraction study of the initial dealloying of Cu3Au(001) and Cu0.83Pd0.17(001). Thin Solid Films 515(14), 5574–5580 (2007)

    Article  CAS  Google Scholar 

  21. M. Wu, X. Wu, L. Zhang, A. Abdelhafiz, I. Chang, C. Qu, Y. Jiang, J. Zeng, F. Alamgir, Cu@Pt catalysts prepared by galvanic replacement of polyhedral copper nanoparticles for polymer electrolyte membrane fuel cells. Electrochim. Acta 306, 167–174 (2019)

    Article  CAS  Google Scholar 

  22. C. Poochai, W. Veerasai, E. Somsook, S. Dangtip, Dealloyed ternary Cu@Pt-Ru core-shell electrocatalysts supported on carbon paper for methanol electrooxidation catalytic activity. Electrochim. Acta 222, 1243–1256 (2016)

    Article  CAS  Google Scholar 

  23. K. Jiang, H.X. Zhang, S. Zou, W.B. Cai, Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 16(38), 20360–20376 (2014)

    Article  CAS  Google Scholar 

  24. F. Yang, Y. Zhang, P.-F. Liu, Y. Cui, X.-R. Ge, Q.-S. Jing, Pd–Cu alloy with hierarchical network structure as enhanced electrocatalysts for formic acid oxidation. Int. J. Hydrog. Energy 41(16), 6773–6780 (2016)

    Article  CAS  Google Scholar 

  25. J. Song, Z. Xiao, Y. Jiang, A. Abdelhafiz, I. Chang, J. Zeng, Surfactant-free room temperature synthesis of PdxPty/C assisted by ultra-sonication as highly active and stable catalysts for formic acid oxidation. Int. J. Hydrog. Energy 44(23), 11655–11663 (2019)

    Article  CAS  Google Scholar 

  26. L. Gan, M. Heggen, R. O'Malley, B. Theobald, P. Strasser, Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett. 13(3), 1131–1138 (2013)

    Article  CAS  Google Scholar 

  27. P. Strasser, S. Kühl, Dealloyed Pt-based core-shell oxygen reduction electrocatalysts. Nano Energy 29, 166–177 (2016)

    Article  CAS  Google Scholar 

  28. M. Wu, M. Li, X. Wu, Y. Li, J. Zeng, S. Liao, Synthesis and characterizations of palladium catalysts with high activity and stability for formic acid oxidation by hydrogen reduction in ethylene glycol at room temperature. J. Power Sources 294, 556–561 (2015)

    Article  CAS  Google Scholar 

  29. M. Ren, J. Chen, Y. Li, H. Zhang, Z. Zou, X. Li, H. Yang, Lattice contracted Pd-hollow nanocrystals: Synthesis, structure and electrocatalysis for formic acid oxidation. J. Power Sources 246, 32–38 (2014)

    Article  CAS  Google Scholar 

  30. L. Xiao, L. Zhuang, Y. Lin, J. Lu, H.D. Abruña, J. Am, Activating Pd by morphology tailoring for oxygen reduction. Chem. Soc. 131(2), 602–608 (2009)

    Article  CAS  Google Scholar 

  31. M. Grdeń, M. Łukaszewski, G. Jerkiewicz, A. Czerwiński, Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption. Electrochim. Acta 53(7583–7598), 7583–7598 (2008)

    Article  Google Scholar 

  32. H.B. Han, C.E. Carlton, A. Kongkanand, R.S. Kukreja, B.R. Theobald, L. Gan, R. O'Malley, P. Strasser, F.T. Wagner, Y. Shao-Horn, Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ. Sci. 8(1), 258–266 (2015)

    Article  CAS  Google Scholar 

  33. B. Claudio, G. Lin, H. Nejc, P.K. Gareth, K. Aleksander, H. Marc, S. Peter, J.J.M. Karl, Stability of dealloyed porous Pt/Ni nanoparticles. ACS Catal. 5, 5000 (2015)

    Article  Google Scholar 

  34. H.-Y. Park, J.H. Park, P. Kim, S.J. Yoo, Hollow PdCu2@Pt core@shell nanoparticles with ordered intermetallic cores as efficient and durable oxygen reduction reaction electrocatalysts. Appl. Catal. B Environ. 225, 84–90 (2018)

    Article  CAS  Google Scholar 

  35. M. Oezaslan, M. Heggen, P. Strasser, Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J. Am. Chem. Soc. 134(1), 514–524 (2012)

    Article  CAS  Google Scholar 

  36. F. Hasche, M. Oezaslan, P. Strasser, Activity, stability, and degradation mechanisms of dealloyed PtCu3 and PtCo3 nanoparticle fuel cell catalysts. Chem Cat Chem 3, 1805 (2011)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (No. 2018YFB0105500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Shu or Jianhuang Zeng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 2232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Zhong, H., Wu, H. et al. Robust and Efficient Pd–Cu Bimetallic Catalysts with Porous Structure for Formic Acid Oxidation and a Mechanistic Study of Electrochemical Dealloying. Electrocatalysis 12, 117–126 (2021). https://doi.org/10.1007/s12678-020-00632-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00632-9

Keywords

Navigation