Skip to main content

Advertisement

Log in

New Modified Sol–Gel Method for the Preparation KNb3O8 as a Hydrogen Evolution Photocatalyst in Z-Scheme Overall Water Splitting

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The layered potassium niobate, KNb3O8, is evident as a photocatalyst for hydrogen production from water splitting under UV light. We hereby reported a new modified sol–gel method for the preparation of potassium niobate photocatalyst. Photocatalytic water splitting has been improved in this work by loading Pt nanoparticles as cocatalyst. The catalysts were characterized by powder X-ray diffraction (XRD), Ultraviolet–Visible spectroscopy (UV–Vis), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Their photocatalytic activities were in (i) an aqueous MeOH, used as sacrificial hole scavengers for hydrogen production and (ii) a new Z-scheme photocatalytic water splitting system where Pt/KNb3O8 was used for H2 evolution and Pt/WO3 was used for O2 evolution. The I/IO3 aqueous solution was used as redox couple for the photocatalytic Z-scheme over all water splitting under UV light irradiation. The photocatalysts were prepared by loading platinum on sol–gel synthesis KNb3O8 and commercial WO3 via impregnation method. We find that, this KNb3O8 belonging to a orthorhombic structure with rod-like morphology. The Pt nanoparticles were sufficiently well-dispersed on the surface of photocatalyst, and enhanced photocatalytic properties. Our results show that I concentration significantly influenced the photocatalytic activity. The combination of Pt/KNb3O8 with Pt/WO3 achieves a high H2 evolution rate (539 μmol g−1 h−1) and O2 evolution rate (140 μmol g−1 h−1) in 2 mM NaI solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2002) A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. J Photochem Photobiol A 148(1–3):71–77

    Article  CAS  Google Scholar 

  2. Sakata Y, Miyoshi Y, Maeda T, Ishikiriyama K, Yamazaki Y, Imamura H, Ham Y, Hisatomi T, Kubota J, Yamakata A, Domen K (2016) Photocatalytic property of metal ion added SrTiO3 to Overall H2O splitting. Appl Catal A 521:227–232. https://doi.org/10.1016/j.apcata.2015.12.013

    Article  CAS  Google Scholar 

  3. Lin HY, Lee TH, Sie CY (2008) Photocatalytic hydrogen production with nickel oxide intercalated K4Nb6O17 under visible light irradiation. Int J Hydrogen Energy 33(15):4055–4063

    Article  CAS  Google Scholar 

  4. Zhu K, Kang SZ, Qin LX, Han S, Li GD, Li XQ (2018) Novel and highly active potassium niobate-based photocatalyst for dramatically enhanced hydrogen production. ACS Sustain Chem Eng 6(7):8591–8598. https://doi.org/10.1021/acssuschemeng.8b00908

    Article  CAS  Google Scholar 

  5. Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125(10):3082–3089

    Article  CAS  Google Scholar 

  6. Ivanova I, Kandiel TA, Cho YJ, Choi W, Bahnemann D (2018) Mechanisms of photocatalytic molecular hydrogen and molecular oxygen evolution over La-doped NaTaO3 particles: effect of different cocatalysts and their specific activity. ACS Catal 8(3):2313–2325. https://doi.org/10.1021/acscatal.7b04326

    Article  CAS  Google Scholar 

  7. Sato J, Saito N, Nishiyama H, Inoue Y (2002) Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O7 (M = Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration. J Photochem Photobiol A 148(1–3):85–89

    Article  CAS  Google Scholar 

  8. Lei ZB, Ma GJ, Liu MY, You WS, Yan HJ, Wu GP, Takata T, Hara M, Domen K, Li C (2006) Sulfur-substituted and zinc-doped In(OH)(3): a new class of catalyst for photocatalytic H-2 production from water under visible light illumination. J Catal 237(2):322–329

    Article  CAS  Google Scholar 

  9. Tian MK, Shangguan WF, Yuan J, Jiang L, Chen MX, Shi JW, Ouyang ZY, Wang SJ (2006) K4Ce2M10O30 (M = Ta, Nb) as visible light-driven photocatalysts for hydrogen evolution from water decomposition. Appl Catal A 309(1):76–84

    Article  CAS  Google Scholar 

  10. Ishikawa A, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ %3c= 650 nm). J Am Chem Soc 124(45):13547–13553

    Article  CAS  Google Scholar 

  11. Tong N, Wang Y, Liu Y, Li MB, Zhang ZZ, Huang HJ, Sun T, Yang JX, Li FY, Wang XX (2018) PdSn/NiO/NaTa3:La: La for photocatalytic ammonia synthesis by reduction of NO3- with formic acid in aqueous solution. J Catal 361:303–312. https://doi.org/10.1016/j.jcat.2018.03.013

    Article  CAS  Google Scholar 

  12. Sasaki Y, Kato H, Kudo A (2013) [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc 135(14):5441–5449. https://doi.org/10.1021/ja400238r

    Article  CAS  Google Scholar 

  13. Maeda K, Lu D, Domen K (2013) Solar-driven Z-scheme water splitting using modified BaZrO3-BaTaO2N solid solutions as photocatalysts. ACS Catal 3(5):1026–1033. https://doi.org/10.1021/cs400156m

    Article  CAS  Google Scholar 

  14. Wang Q, Li Y, Hisatomi T, Nakabayashi M, Shibata N, Kubota J, Domen K (2015) Z-scheme water splitting using particulate semiconductors immobilized onto metal layers for efficient electron relay. J Catal 328:308–315. https://doi.org/10.1016/j.jcat.2014.12.006

    Article  CAS  Google Scholar 

  15. Shen HF, Lu YJ, Wang YM, Pan ZD, Cao GZ, Yan XH, Fang GL (2016) Low temperature hydrothermal synthesis of SrTiO3 nanoparticles without alkali and their effective photocatalytic activity. J Adv Ceram 5(4):298–307. https://doi.org/10.1007/s40145-016-0203-3

    Article  CAS  Google Scholar 

  16. Oakton E, Siddiqi G, Fedorov A, Coperet C (2016) Tungsten oxide by non-hydrolytic sol–gel: effect of molecular precursor on morphology, phase and photocatalytic performance. New J Chem 40(1):217–222. https://doi.org/10.1039/c5nj01973g

    Article  CAS  Google Scholar 

  17. Li X, Yu J, Jaroniec M (2016) Hierarchical photocatalysts. Chem Soc Rev 45(9):2603–2636. https://doi.org/10.1039/c5cs00838g

    Article  CAS  Google Scholar 

  18. Gadiyar C, Loiudice A, Buonsanti R (2017) Colloidal nanocrystals for photoelectrochemical and photocatalytic water splitting. J Phys D 50(7):22. https://doi.org/10.1088/1361-6463/aa50cd

    Article  CAS  Google Scholar 

  19. Lin H-Y, Chang Y-S (2014) Photocatalytic water splitting on Au/HTiNbO5 nanosheets. Int J Hydrogen Energy 39(7):3118–3126. https://doi.org/10.1016/j.ijhydene.2013.12.094

    Article  CAS  Google Scholar 

  20. Song YJ, Wang H, Xiong JH, Guo BB, Liang SJ, Wu L (2018) Photocatalytic hydrogen evolution over monolayer H1.07Ti1.73O4 center dot H2O nanosheets: roles of metal defects and greatly enhanced performances. Appl Catal B 221:473–481. https://doi.org/10.1016/j.apcatb.2017.09.009

    Article  CAS  Google Scholar 

  21. Sarahan MC, Carroll EC, Allen M, Larsen DS, Browning ND, Osterloh FE (2008) K4Nb6O17-derived photocatalysts for hydrogen evolution from water: Nanoscrolls versus nanosheets. J Solid State Chem 181(7):1678–1683. https://doi.org/10.1016/j.jssc.2008.06.021

    Article  CAS  Google Scholar 

  22. Ma YL, Liu XQ, Li Y, Su YG, Chai ZL, Wang XJ (2014) K4Nb6O17 center dot 4.5H(2)O: a novel dual functional material with quick photoreduction of Cr(VI) and high adsorptive capacity of Cr(III). J Hazard Mater 279:537–545. https://doi.org/10.1016/j.jhazmat.2014.07.046

    Article  CAS  Google Scholar 

  23. Li X, Pan H, Li W, Zhuang Z (2012) Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts. Appl Catal A 413–414:103–108. https://doi.org/10.1016/j.apcata.2011.10.044

    Article  CAS  Google Scholar 

  24. Rubel MHK, Hossain ME, Parvez MS, Rahaman MM, Islam MS, Kumada N, Kojima S (2018) Low-temperature synthesis of potassium triniobate (KNb3O8) ceramic powder by a novel aqueous organic gel route. J Aust Ceram Soc 55(3):759–764. https://doi.org/10.1007/s41779-018-0287-z

    Article  CAS  Google Scholar 

  25. Yang G, Kong Y, Hou W, Yan Q (2005) Heating behavior and crystal growth mechanism in microwave field. J Phys Chem B 109(4):1371–1379. https://doi.org/10.1021/jp0470905

    Article  CAS  Google Scholar 

  26. Borrell A, Salvador MD (2018) Advanced ceramic materials sintered by microwave technology. Sinter Technol. https://doi.org/10.5772/intechopen.78831

    Article  Google Scholar 

  27. Cheng X, Zhu HJ, Yu HX, Ye WQ, Zheng RT, Liu TT, Peng N, Shui M, Shu J (2018) K2Nb8O21 nanotubes with superior electrochemical performance for ultrastable lithium storage. J Mater Chem A 6(18):8620–8632. https://doi.org/10.1039/c8ta01411f

    Article  CAS  Google Scholar 

  28. Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng Y-H (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B 68(1):1–11. https://doi.org/10.1016/j.apcatb.2006.07.018

    Article  CAS  Google Scholar 

  29. Liu X, Que W, Kong LB (2015) Hydrothermal synthesis of bamboo-shaped nanosheet KNb3O8 with enhanced photocatalytic activity. J Alloy Compd 627:117–122. https://doi.org/10.1016/j.jallcom.2014.12.115

    Article  CAS  Google Scholar 

  30. Li FB, Li XZ (2002) The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere 48(10):1103

    Article  CAS  Google Scholar 

  31. Kim W, Tachikawa T, Kim H, Lakshminarasimhan N, Murugan P, Park H, Majima T, Choi W (2014) Visible light photocatalytic activities of nitrogen and platinum-doped TiO2: synergistic effects of co-dopants. Appl Catal 147:642–650. https://doi.org/10.1016/j.apcatb.2013.09.034

    Article  CAS  Google Scholar 

  32. Abe R, Sayama K, Sugihara H (2005) Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3 (−)/I. J Phys Chem B 109(33):16052–16061

    Article  CAS  Google Scholar 

  33. Abe R, Sayama K, Domen K, Arakawa H (2001) A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator. Chem Phys Lett 344(3–4):339

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Council, Taiwan, Republic of China (Grant No. NSC 106-2221-E-259-016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-yu Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SH., Su, JH. & Lin, Hy. New Modified Sol–Gel Method for the Preparation KNb3O8 as a Hydrogen Evolution Photocatalyst in Z-Scheme Overall Water Splitting. Top Catal 63, 996–1004 (2020). https://doi.org/10.1007/s11244-020-01272-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01272-5

Keywords

Navigation