Skip to main content

Advertisement

Log in

Enhanced catalytic property of metal oxide for an efficient visible-induced photoelectrochemical water splitting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn-doped ZnO nanorods (NRs) were grown on a conductive iodine-doped tin oxide substrate with a cost-effective two-step method (sol–gel and hydrothermal). The effect of varying concentration of dopants on morphology and photocurrent density is closely investigated. For microstructural and optical analysis, the bare and Sn-doped ZnO NRs were subjected to field emission scanning electron microscope (FESEM), energy-dispersive spectroscopy, X-ray diffraction, UV–Vis, and Raman spectroscopy. The presence of the most intense peak directed to (0002) plane confirmed the growth of ZnO NRs and their vertical alignment towards c-axis. The impact on nucleation density and morphology due to the addition of dopant was revealed by the FESEM images. The Raman analysis also confirmed the wurtzite nature of ZnO NRs along with the impact of dopant in its crystallinity. The aim of this work was to ameliorate the capability of absorbing solar light in the visible range. Sn0.05Zn0.95O exhibited highest photocurrent density among all the doped samples with 0.199% photo-conversion efficiency under visible-light illumination. Therefore, the synthesised Sn0.05Zn0.95O seems to be an efficient candidate for photoelectrochemical water-splitting application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y.F. Xu, H.S. Rao, X.D. Wang, H.Y. Chen, D.B. Kuang, C.Y. Su, J. Mater. Chem. A. 4, 5124 (2016)

    Article  CAS  Google Scholar 

  2. B.S. Wang, R.Y. Li, Z.Y. Zhang, X. Wang, X.L. Wu, G.A. Chang, R.T. Zheng, Catal. Today 321, 100 (2019)

    Article  Google Scholar 

  3. N. Abdullayeva, C.T. Altaf, M. Mintas, A. Ozer, M. Sankir, H. Kurt, N.D. Sankir, Sci. Rep. 9, 11006 (2019)

    Article  Google Scholar 

  4. J. Han, Z. Liu, A.C.S. Appl, Energy Mater. 4, 1004 (2021)

    CAS  Google Scholar 

  5. N. Siva, D. Sakthi, S. Ragupathy, V. Arun, N. Kannadasan, Mater. Sci. Eng. B. 253, 114497 (2020)

    Article  CAS  Google Scholar 

  6. M.I. Lee, M.C. Huang, D. Legrand, G. Lerondel, J.C. Lin, Thin Solid Films 570, 516 (2014)

    Article  CAS  Google Scholar 

  7. J.B. Rani, A. Anusiya, M.P. Kumar, S. Ravichandran, R.K. Guduru, G. Ravi, R. Yuvakumar, J. Mater. Sci. Mater. Electron. 30, 731 (2019)

    Article  CAS  Google Scholar 

  8. K. Karmakar, A. Sarkar, K. Mandal, G.G. Khan, A.C.S. Sustain, Chem. Eng. 4, 5693 (2016)

    CAS  Google Scholar 

  9. B.M. Rajbongshi, S.K. Samdarshi, Appl. Catal. B. 144, 435 (2014)

    Article  CAS  Google Scholar 

  10. R. Beura, R. Pachaiappan, P. Thangadurai, Appl. Surf. Sci. 433, 887 (2018)

    Article  CAS  Google Scholar 

  11. N. Siva, D. Sakthi, S. Ragupathy, V. Arun, N. Kannadasan, Mater Sci Eng B 253, 114497 (2020)

    Article  CAS  Google Scholar 

  12. S. Bhatia, N. Verma, R.K. Bedi, Appl. Surf. Sci. 407, 495–502 (2017)

    Article  CAS  Google Scholar 

  13. Y.H. Lu, W.H. Lin, C.Y. Yang, Y.H. Chiu, Y.C. Pu, M.H. Lee, Y.C. Tseng, Y.J. Hsu, Nanoscale 6, 8796 (2014)

    Article  CAS  Google Scholar 

  14. S.M. Jeon, M.S. Kim, M.Y. Cho, H.Y. Choi, K.G. Yim, G.S. Kim, H.G. Kim, J.Y. Leem, J. Korean Phys. Soc. 57, 1477–1481 (2010)

    Article  CAS  Google Scholar 

  15. M. Chakraborty, P. Mahapatra, R. Thangavel, Thin Solid Films 612, 49–54 (2016)

    Article  CAS  Google Scholar 

  16. A. Sreedhar, N. Reddy, Q.T.H. Ta, E. Cho, J.S. Noh, Sol. Energy. 191, 151 (2019)

    Article  CAS  Google Scholar 

  17. S. Ilican, M. Caglar, Y. Caglar, Appl. Surf. Sci. 256, 7204 (2010)

    Article  CAS  Google Scholar 

  18. S.K. Mishra, S. Bayan, R. Shankar, P. Chakraborty, R.K. Srivastava, Sens. Actuator A Phys. 211, 8 (2014)

    Article  CAS  Google Scholar 

  19. N. Chahmat, T. Souier, A. Mokri, M. Bououdina, M.S. Aida, M. Ghers, J. Alloys Compd. 593, 148 (2014)

    Article  CAS  Google Scholar 

  20. X. Lu, X.E. Cao, Y. Liu, X. Li, M. Wang, M. Li, Int. J. Hydrogen Energy 43, 21365–21373 (2018)

    Article  Google Scholar 

  21. C. Karunakaran, S. SaakthiRaadha, P. Gomthishankar, P. Vinayagamoorthy, Dalton Trans. 42, 13855–13865 (2013)

    Article  CAS  Google Scholar 

  22. S.S. Kurvanov, S.Z. Urolov, Z.S. Shyamardanov, Opt Spectrosc. 124, 198 (2018)

    Article  Google Scholar 

  23. A. Sharma, M. Chakraborty, R. Thangavel, J. Mater. Sci. Mater. Electron. 29, 14710 (2018)

    Article  CAS  Google Scholar 

  24. G.C. Park, S.M. Hwang, J.H. Lim, J. Joo, Nanoscale 6, 1840 (2014)

    Article  CAS  Google Scholar 

  25. S. Suhaimi, S. Sakrani, T. Dorji, A.K. Ismail, Nanoscale Res. Lett. 9, 256 (2014)

    Article  Google Scholar 

  26. M. Jung, S. Kim, S. Ju, Opt. Mater. 33, 280–283 (2011)

    Article  CAS  Google Scholar 

  27. K.Y. Hwa, A. Santhan, T.S.K. Sharma, Microchem. J 160, 105689 (2021)

    Article  CAS  Google Scholar 

  28. H.A.Z. Wahab, A.A. Salama, A.A.E. Saeid, O. Nur, Results Phys. 3, 46 (2013)

    Article  Google Scholar 

  29. A. Gadallah, M.M.E. Nahass, Adv. Condens. Matter Phys. 2013, 1 (2013)

    Article  Google Scholar 

  30. F. Khurshid, M. Jeyavelan, M.S.L. Hudson, S. Nagarajan, R. Soc. Open. Sci. 6, 181764 (2019)

    Article  CAS  Google Scholar 

  31. V. Ganesh, I.S. Yahia, S. Alfaify, M. Shkir, J. Phys. Chem. Solids 100, 115 (2017)

    Article  CAS  Google Scholar 

  32. A. Shah, M. Ahmad, Rahmanuddin, S. Khan, U. Aziz, Z. Ali, A. Khan, A. Mahmood, Appl. Phys. A. 125, 713 (2019)

    Article  Google Scholar 

  33. X. Tian, Z. Pan, H. Zhang, H. Fan, Ceram. Int. 39, 6497 (2013)

    Article  CAS  Google Scholar 

  34. R. Yew, S.K. Karuturi, J. Liu, H.H. Tan, Y. Wu, C. Jagadish, Opt. Express 27, 761 (2019)

    Article  CAS  Google Scholar 

  35. S. Bai, J. Han, Y. Zhao, H. Chu, S. Wei, J. Sun, L. Sun, R. Luo, D. Li, A. Chen, Renew. Energy 148, 380 (2020)

    Article  CAS  Google Scholar 

  36. T.F. Hou, A. Shanmugasundaram, M.A. Hassan, M.A. Johar, S.W. Ryu, D.W. Lee, Int. J. Hydrogen Energy. 44, 19177 (2019)

    Article  CAS  Google Scholar 

  37. Y. Zhang, J. Zhang, M. Nie, K. Sun, C. Li, J. Yu, J. Nanoparticle Res. 17, 322 (2015)

    Article  Google Scholar 

  38. F. Bakhtiargonbadi, H. Esfanhani, R.S. Moakhar, F. Dabir, Mater. Chem. Phys. 252, 123270 (2020)

    Article  CAS  Google Scholar 

  39. H. Huang, X. Hou, J. Xiao, L. Zhao, Q. Huang, H. Chen, Y. Li, Catal. Today. 330, 189 (2019)

    Article  CAS  Google Scholar 

  40. B.J. Rani, A. Anusiya, M.P. Kumar, S. Ravichandran, R.K. Guduru, G. Ravi, R.Y. Kumar, J. Mater. Sci. Mater. Electron. 30, 731 (2019)

    Article  CAS  Google Scholar 

  41. P. Sahoo, A. Sharma, S. Padhan, G. Udaybhanu, R. Thangavel, Sol. Energy 193, 148 (2019)

    Article  CAS  Google Scholar 

  42. X. Li, J. Su, L. Guo, J. Mater. Sci. Mater. Electron. 31, 15773 (2020)

    Article  CAS  Google Scholar 

  43. N. Zhou, R. Yan, X. Wang, J. Fu, J. Zhang, Y. Li, X. Sun, Chemosphere 273, 129679 (2021)

    Article  CAS  Google Scholar 

  44. A.G. Abd-Elrahim, D.M. Chun, J. Alloys Compd. 870, 159430 (2021)

    Article  CAS  Google Scholar 

  45. F. Xu, J. Mei, X. Li, Y. Sun, D. Wu, Z. Gao, Q. Zhang, K. Jiang, J. Nanoparticle Res. 19, 297 (2017)

    Article  Google Scholar 

  46. M. Li, X. Tu, Y. Wang, Y. Su, J. Hu, Z. Yang, Y. Zhang, Nanomicro Lett. 10, 45 (2018)

    Google Scholar 

  47. A. Sreedhar, H. Jung, J.H. Kwon, J. Yi, Y. Sohn, J.S. Gwag, J. Electroanal. 804, 92 (2017)

    Article  CAS  Google Scholar 

  48. L. Cai, F. Ren, M. Wang, G. Cai, Y. Chen, Y. Liu, S. Shen, L. Guo, Int. J. Hydrogen Energy 40, 1394 (2015)

    Article  CAS  Google Scholar 

  49. B.S. Wang, R.Y. Li, Z.Y. Zhang, X. Wang, X.L. Wu, G.A. Cheng, R.T. Zheng, Catal. Today. 321, 100 (2019)

    Article  Google Scholar 

  50. F. Rasouli, A. Rouhollahi, F. Ghahramanifard, Mater. Sci. Semicond. Process. 93, 371 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to IIT(ISM) Dhanbad for providing Research fellowship and Central Research facilities (CRF). The authors would also like to thank SRM University for providing XRD facility, IIT Kanpur for EDAX analysis and IIT Bombay for the Raman facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thangavel.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Padhan, S. & Thangavel, R. Enhanced catalytic property of metal oxide for an efficient visible-induced photoelectrochemical water splitting. J Mater Sci: Mater Electron 33, 9003–9017 (2022). https://doi.org/10.1007/s10854-021-07091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07091-y

Navigation