Skip to main content

Advertisement

Log in

Speciation and Electronic Structure of La1−xSrxCoO3−δ During Oxygen Electrolysis

  • Original Article
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Cobalt-containing perovskite oxides are promising electrocatalysts for the oxygen evolution reaction (OER) in alkaline electrolyzers. However, a lack of fundamental understanding of oxide surfaces impedes rational catalyst design for improved activity and stability. We couple electrochemical studies of epitaxial La1−xSrxCoO3−δ films with in situ and operando ambient pressure X-ray photoelectron spectroscopy to investigate the surface stoichiometry, adsorbates, and electronic structure. In situ investigations spanning electrode compositions in a humid environment indicate that hydroxyl and carbonate affinity increase with Sr content, leading to an increase in binding energy of metal core levels and the valence band edge from the formation of a surface dipole. The maximum in hydroxylation at 40% Sr is commensurate with the highest OER activity, where activity scales with greater hole carrier concentration and mobility. Operando measurements of the 20% Sr-doped oxide in alkaline electrolyte indicate that the surface stoichiometry remains constant during OER, supporting the idea that the oxide electrocatalyst is stable and behaves as a metal, with the voltage drop confined to the electrolyte. Furthermore, hydroxyl and carbonate species are present on the electrode surface even under oxidizing conditions, and may impact the availability of active sites or the binding strength of adsorbed intermediates via adsorbate–adsorbate interactions. For covalent oxides with facile charge transfer kinetics, the accumulation of hydroxyl species with oxidative potentials suggests the rate of reaction could be limited by proton transfer kinetics. This operando insight will help guide modeling of self-consistent oxide electrocatalysts, and highlights the potential importance of carbonates in oxygen electrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y (2011) Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat Chem 3(7):546–550

    Article  CAS  PubMed  Google Scholar 

  2. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061):1383–1385

    Article  CAS  PubMed  Google Scholar 

  3. Bockris JOM, Otagawa T (1984) The electrocatalysis of oxygen evolution on perovskites. J Electrochem Soc 131(2):290–302

    Article  CAS  Google Scholar 

  4. Meadowcroft DB (1970) Low-cost oxygen electrode material. Nature 226(5248):847–848

    Article  CAS  PubMed  Google Scholar 

  5. Matsumoto Y, Yoneyama H, Tamura H (1977) Influence of the nature of the conduction band of transition metal oxides on catalytic activity for oxygen reduction. J Electroanal Chem Interfacial Electrochem 83(2):237–243

    Article  CAS  Google Scholar 

  6. Hibbert DB, Tseung ACC (1978) Homomolecular oxygen exchange and the electrochemical reduction of oxygen on semiconducting oxides. J Electrochem Soc 125(1):74–78

    Article  CAS  Google Scholar 

  7. Larsson R, Johansson LY (1990) On the catalytic properties of mixed oxides for the electrochemical reduction of oxygen. J Power Sources 32(3):253–260

    Article  CAS  Google Scholar 

  8. Peña MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101(7):1981–2018

    Article  PubMed  CAS  Google Scholar 

  9. Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7):1159–1165

    Article  CAS  Google Scholar 

  10. Hong WT, Risch M, Stoerzinger KA, Grimaud A, Suntivich J, Shao-Horn Y (2015) Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ Sci 8(5):1404–1427

    Article  CAS  Google Scholar 

  11. Fabbri E, Habereder A, Waltar K, Kotz R, Schmidt TJ (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4(11):3800–3821

    Article  CAS  Google Scholar 

  12. Vojvodic A, Nørskov JK (2011) Optimizing perovskites for the water-splitting reaction. Science 334(6061):1355–1356

    Article  CAS  PubMed  Google Scholar 

  13. Malkhandi S, Yang B, Manohar AK, Manivannan A, Prakash GKS, Narayanan SR (2012) Electrocatalytic properties of nanocrystalline calcium-doped lanthanum cobalt oxide for bifunctional oxygen electrodes. J Phys Chem Lett 3(8):967–972

    Article  CAS  PubMed  Google Scholar 

  14. Zhu Y, Zhou W, Chen Z-G, Chen Y, Su C, Tadé MO, Shao Z (2015) SrNb0.1Co0.7Fe0.2O3−δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew Chem Int Ed 54(13):3897–3901

    Article  CAS  Google Scholar 

  15. Sunarso J, Torriero AAJ, Zhou W, Howlett PC, Forsyth M (2012) Oxygen reduction reaction activity of La-based perovskite oxides in alkaline medium: a thin-film rotating ring-disk electrode study. J Phys Chem C 116(9):5827–5834

    Article  CAS  Google Scholar 

  16. Grimaud A, May KJ, Carlton CE, Lee Y-L, Risch M, Hong WT, Zhou J, Shao-Horn Y (2013) Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat Comm 4:2439

    Article  CAS  Google Scholar 

  17. Stoerzinger KA, Choi WS, Jeen H, Lee HN, Shao-Horn Y (2015) Role of strain and conductivity in oxygen electrocatalysis on LaCoO3 thin films. J Phys Chem Lett 6(3):487–492

    Article  CAS  PubMed  Google Scholar 

  18. Conder K, Pomjakushina E, Soldatov A, Mitberg E (2005) Oxygen content determination in perovskite-type cobaltates. Mater Res Bull 40(2):257–263

    Article  CAS  Google Scholar 

  19. Bychkov SF, Sokolov AG, Popov MP, Nemudry AP (2016) Relation between oxygen stoichiometry and thermodynamic properties and the electronic structure of nonstoichiometric perovskite La0.6Sr0.4CoO3–d. Phys Chem Chem Phys 18(42):29543–29548

    Article  CAS  PubMed  Google Scholar 

  20. Takeda Y, Kanno R, Takada T, Yamamoto O, Takano M, Bando Y (1986) Phase relation and oxygen-non-stoichiometry of perovskite-like compound SrCoOx (2.29 < x> 2.80). Z Anorg Allg Chem 540(9–10):259–270.

    Article  Google Scholar 

  21. Sunstrom JE, Ramanujachary KV, Greenblatt M, Croft M (1998) The synthesis and properties of the chemically oxidized perovskite, La1–xSrxCoO3–δ (0.5 ≤ x ≤ 0.9). J Solid State Chem 139(2):388–397

    Article  CAS  Google Scholar 

  22. Cheng X, Fabbri E, Nachtegaal M, Castelli IE, El Kazzi M, Haumont R, Marzari N, Schmidt TJ (2015) Oxygen evolution reaction on La1–xSrxCoO3 perovskites: a combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem Mater 27(22):7662–7672

    Article  CAS  Google Scholar 

  23. Hidehito O, Tetsuichi K, Tetsuo G (1974) Crystallographic, electric and thermochemical properties of the perovskite-type Ln1–xSrxCoO3 (Ln: lanthanoid element). Jpn J Appl Phys 13(1):1

    Article  Google Scholar 

  24. Kudo T, Obayashi H, Gejo T (1975) Electrochemical behavior of the perovskite-type Nd1–xSrxCoO3 in an aqueous alkaline solution. J Electrochem Soc 122(2):159–163

    Article  CAS  Google Scholar 

  25. Jain AN, Tiwari SK, Singh RN, Chartier P (1995) Low-temperature synthesis of perovskite-type oxides of lanthanum and cobalt and their electrocatalytic properties for oxygen evolution in alkaline solutions. J Chem Soc Faraday Trans 91(12):1871–1875

    Article  CAS  Google Scholar 

  26. Mefford JT, Rong X, Abakumov AM, Hardin WG, Dai S, Kolpak AM, Johnston KP, Stevenson KJ (2016) Water electrolysis on La1–xSrxCoO3–δ perovskite electrocatalysts. Nat Comm 7:11053

    Article  CAS  Google Scholar 

  27. Miyahara Y, Miyazaki K, Fukutsuka T, Abe T (2016) Influence of surface orientation on the catalytic activities of La0.8Sr0.2CoO3 crystal electrodes for oxygen reduction and evolution reactions. ChemElectroChem 3(2):214–217

    Article  CAS  Google Scholar 

  28. Stoerzinger KA, Lü W, Li C, Venkatesan T, Shao-Horn Y (2015) Highly active epitaxial La(1–x)SrxMnO3 surfaces for the oxygen reduction reaction: role of charge transfer. J Phys Chem Lett 6(8):1435–1440

    Article  CAS  PubMed  Google Scholar 

  29. Rong X, Parolin J, Kolpak AM (2016) A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal 6(2):1153–1158

    Article  CAS  Google Scholar 

  30. Grimaud A, Diaz-Morales O, Han B, Hong WT, Lee Y-L, Giordano L, Stoerzinger KA, Koper MTM, Shao-Horn Y (2017) Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat Chem 9:457–465

    Article  CAS  PubMed  Google Scholar 

  31. Stoerzinger KA, Hong WT, Crumlin EJ, Bluhm H, Shao-Horn Y (2015) Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy. Acc Chem Res 48(11):2976–2983

    Article  CAS  PubMed  Google Scholar 

  32. Crumlin EJ, Liu Z, Bluhm H, Yang W, Guo J, Hussain Z (2015) X-ray spectroscopy of energy materials under in situ/operando conditions. J Electron Spectrosc Relat Phenom 200:264–273

    Article  CAS  Google Scholar 

  33. Lena T, Ashley RH, Osman K, Line K, Hendrik B (2017) Ambient pressure photoelectron spectroscopy: practical considerations and experimental frontiers. J Phys Condens Matter 29(5):053002

    Article  Google Scholar 

  34. Yamamoto S, Bluhm H, Andersson K, Ketteler G, Ogasawara H, Salmeron M, Nilsson A (2008) In situ X-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions. J Phys Condens Matter 20(18):184025

    Article  CAS  Google Scholar 

  35. Stoerzinger KA, Hong WT, Crumlin EJ, Bluhm H, Biegalski MD, Shao-Horn Y (2014) Water reactivity on the LaCoO3 (001) surface: an ambient pressure X-ray photoelectron spectroscopy study. J Phys Chem C 118(34):19733–19741

    Article  CAS  Google Scholar 

  36. Stoerzinger KA, Hong WT, Azimi G, Giordano L, Lee Y-L, Crumlin EJ, Biegalski MD, Bluhm H, Varanasi KK, Shao-Horn Y (2015) Reactivity of perovskites with water: role of hydroxylation in wetting and implications for oxygen electrocatalysis. J Phys Chem C 119:18504–18512

    Article  CAS  Google Scholar 

  37. Axnanda S, Crumlin EJ, Mao B, Rani S, Chang R, Stolte W, Karlsson PG, Edwards MOM, Lundqvist M, Moberg R, Ross PN, Hussain Z, Liu Z (2015) Using “tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci Rep 5:9788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karsloglu O, Nemsak S, Zegkinoglou I, Shavorskiy A, Hartl M, Salmassi F, Gullikson EM, Ng ML, Rameshan C, Rude B, Bianculli D, Cordones AA, Axnanda S, Crumlin EJ, Ross PN, Schneider CM, Hussain Z, Liu Z, Fadley CS, Bluhm H (2015) Aqueous solution/metal interfaces investigated in operando by photoelectron spectroscopy. Faraday Discuss 180:35–53

    Article  CAS  Google Scholar 

  39. Ali-Löytty H, Louie MW, Singh MR, Li L, Sanchez Casalongue HG, Ogasawara H, Crumlin EJ, Liu Z, Bell AT, Nilsson A, Friebel D (2016) Ambient-pressure XPS study of a Ni–Fe electrocatalyst for the oxygen evolution reaction. J Phys Chem C 120(4):2247–2253

    Article  CAS  Google Scholar 

  40. Lichterman MF, Hu S, Richter MH, Crumlin EJ, Axnanda S, Favaro M, Drisdell W, Hussain Z, Mayer T, Brunschwig BS, Lewis NS, Liu Z, Lewerenz H-J (2015) Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ Sci 8(8):2409–2416

    Article  CAS  Google Scholar 

  41. Favaro M, Jeong B, Ross PN, Yano J, Hussain Z, Liu Z, Crumlin EJ (2016) Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat Comm 7:12695

    Article  CAS  Google Scholar 

  42. van der Pauw LJ (1958) A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. Philips Tech Rev 8:220–224

    Google Scholar 

  43. Grass ME, Karlsson PG, Aksoy F, Lundqvist M, Wannberg B, Mun BS, Hussain Z, Liu Z (2010) New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. Rev Sci Instrum 81(5):053106

    Article  PubMed  CAS  Google Scholar 

  44. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) P-type electrical conduction in transparent thin films of CuAlO2. Nature 389(6654):939–942

    Article  CAS  Google Scholar 

  45. Suntivich J, Hong WT, Lee Y-L, Rondinelli JM, Yang W, Goodenough JB, Dabrowski B, Freeland JW, Shao-Horn Y (2014) Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy. J Phys Chem C 118(4):1856–1863

    Article  CAS  Google Scholar 

  46. Hautier G, Miglio A, Ceder G, Rignanese G-M, Gonze X (2013) Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat Comm 4:2292

    Article  CAS  Google Scholar 

  47. Risch M, Stoerzinger KA, Maruyama S, Hong WT, Takeuchi I, Shao-Horn Y (2014) La0.8Sr0.2MnO3–δ decorated with Ba0.5Sr0.5Co0.8Fe0.2O3–δ: a bifunctional surface for oxygen electrocatalysis with enhanced stability and activity. J Am Chem Soc 136(14):5229–5232

    Article  CAS  PubMed  Google Scholar 

  48. Imamura M, Matsubayashi N, Shimada H (2000) Catalytically active oxygen species in La1–xSrxCoO3–δ studied by XPS and XAFS spectroscopy. J Phys Chem B 104(31):7348–7353

    Article  CAS  Google Scholar 

  49. van der Heide PAW (2002) Systematic X-ray photoelectron spectroscopic study of La1–xSrx-based perovskite-type oxides. Surf Interface Anal 33(5):414–425

    Article  CAS  Google Scholar 

  50. Hong WT, Stoerzinger KA, Crumlin EJ, Mutoro E, Jeen H, Lee HN, Shao-Horn Y (2016) Near-ambient pressure XPS of high-temperature surface chemistry in Sr2Co2O5 thin films. Top Catal 59(5):574–582

    Article  CAS  Google Scholar 

  51. Petitto SC, Marsh EM, Carson GA, Langell MA (2008) Cobalt oxide surface chemistry: the interaction of CoO(1 0 0), Co3O4(1 1 0) and Co3O4 (1 1 1) with oxygen and water. J Mol Catal A 281(1–2):49–58

    Article  CAS  Google Scholar 

  52. Stoerzinger KA, Comes R, Spurgeon SR, Thevuthasan S, Ihm K, Crumlin EJ, Chambers SA (2017) Influence of LaFeO3 surface termination on water reactivity. J Phys Chem Lett 8(5):1038–1043

    Article  CAS  PubMed  Google Scholar 

  53. Tascon JMD, Tejuca LG (1981) Adsorption of CO2 on the perovskite-type oxide LaCoO3. J Chem Soc Faraday Trans 1 77(3):591–602

    Article  CAS  Google Scholar 

  54. Axnanda S, Scheele M, Crumlin E, Mao B, Chang R, Rani S, Faiz M, Wang S, Alivisatos AP, Liu Z (2013) Direct work function measurement by gas phase photoelectron spectroscopy and its application on PbS nanoparticles. Nano Lett 13(12):6176–6182

    Article  CAS  PubMed  Google Scholar 

  55. Tsvetkov N, Lu Q, Sun L, Crumlin EJ, Yildiz B (2016) Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nat Mater 15(9):1010–1016

    Article  CAS  PubMed  Google Scholar 

  56. Hong WT, Stoerzinger KA, Moritz B, Devereaux TP, Yang W, Shao-Horn Y (2015) Probing LaMO3 metal and oxygen partial density of states using X-ray emission, absorption, and photoelectron spectroscopy. J Phys Chem C 119(4):2063–2072

    Article  CAS  Google Scholar 

  57. Krischok S, Höfft O, Günster J, Stultz J, Goodman DW, Kempter V (2001) H2O interaction with bare and Li-precovered TiO2: studies with electron spectroscopies (MIES and UPS (HeI and II)). Surf Sci 495(1–2):8–18

    Article  CAS  Google Scholar 

  58. Crumlin EJ, Mutoro E, Liu Z, Grass ME, Biegalski MD, Lee Y-L, Morgan D, Christen HM, Bluhm H, Shao-Horn Y (2012) Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells. Energy Environ Sci 5(3):6081–6088

    Article  CAS  Google Scholar 

  59. Sunding MF, Hadidi K, Diplas S, Løvvik OM, Norby TE, Gunnæs AE (2011) XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J Electron Spectrosc Relat Phenom 184(7):399–409

    Article  CAS  Google Scholar 

  60. Feng ZA, Balaji Gopal C, Ye X, Guan Z, Jeong B, Crumlin E, Chueh WC (2016) Origin of overpotential-dependent surface dipole at CeO2–x/gas interface during electrochemical oxygen insertion reactions. Chem Mater 28(17):6233–6242

    Article  CAS  Google Scholar 

  61. Stoerzinger KA, Favaro M, Ross PN, Yano J, Liu Z, Hussain Z, Crumlin EJ (2018) Probing the surface of platinum during the hydrogen evolution reaction in alkaline electrolyte. J Phys Chem B 122(2):864–870

    Article  PubMed  CAS  Google Scholar 

  62. May KJ, Carlton CE, Stoerzinger KA, Risch M, Suntivich J, Lee Y-L, Grimaud A, Shao-Horn Y (2012) Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J Phys Chem Lett 3(22):3264–3270

    Article  CAS  Google Scholar 

  63. Grahame DC, Soderberg BA (1954) Ionic Components of charge in the electrical double layer. J Chem Phys 22(3):449–460

    Article  CAS  Google Scholar 

  64. Hong WT, Welsch RE, Shao-Horn Y (2016) Descriptors of oxygen-evolution activity for oxides: a statistical evaluation. J Phys Chem C 120(1):78–86

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Skoltech-MIT Center for Electrochemical Energy and the Cooperative Agreement between the Masdar Institute, Abu Dhabi, UAE and MIT (02/MI/MIT/CP/11/07633/GEN/G/00). K.A.S. was supported in part by the Linus Pauling Distinguished Post-doctoral Fellowship at Pacific Northwest National Laboratory (PNNL LDRD 69319). PNNL is a multiprogram national laboratory operated for DOE by Battelle. This research used beamlines 9.3.2 and 9.3.1 at the Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231. The PLD film growth was conducted at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelsey A. Stoerzinger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1571 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoerzinger, K.A., Renshaw Wang, X., Hwang, J. et al. Speciation and Electronic Structure of La1−xSrxCoO3−δ During Oxygen Electrolysis. Top Catal 61, 2161–2174 (2018). https://doi.org/10.1007/s11244-018-1070-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1070-7

Keywords

Navigation