Skip to main content
Log in

Near-Ambient Pressure XPS of High-Temperature Surface Chemistry in Sr2Co2O5 Thin Films

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr2Co2O5 (SCO) epitaxial thin films with different crystallographic orientations. Detailed analysis of the Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La0.8Sr0.2CoO3−δ thin films by SCO surface particles observed previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adler SB (2004) Chem Rev 104:4791–4843

    Article  CAS  Google Scholar 

  2. Chueh WC, Haile SM (2012) Annu Rev Chem Biomol Eng 3:313–341

    Article  CAS  Google Scholar 

  3. Crumlin EJ, Mutoro E, Ahn SJ, la O’ GJ, Borisevich A, Biegalski MD, Christen HM, Shao-Horn Y (2010) J Phys Chem Lett 1:3149–3155

    Article  CAS  Google Scholar 

  4. Mutoro E, Crumlin EJ, Biegalski MD, Christen HM, Shao-Horn Y (2011) Energy Environ Sci 4:3689

    Article  CAS  Google Scholar 

  5. Lee W, Han JW, Chen Y, Cai Z, Yildiz B (2013) J Am Chem Soc 135:7909–7925

    Article  CAS  Google Scholar 

  6. Ding H, Virkar AV, Liu M, Liu F (2013) Phys Chem Chem Phys 15:489–496

    Article  CAS  Google Scholar 

  7. Druce J, Tellez H, Burriel M, Sharp MD, Fawcett LJ, Cook SN, McPhail DS, Ishihara T, Brongersma HH, Kilner JA (2014) Energy Environ Sci 7:3593–3599

    Article  CAS  Google Scholar 

  8. Cai Z, Kubicek M, Fleig J, Yildiz B (2012) Chem Mater 24:1116–1127

    Article  CAS  Google Scholar 

  9. laO’ GJ, Ahn SJ, Crumlin E, Orikasa Y, Biegalski MD, Christen HM, Shao-Horn Y (2010) Angew Chem Int Ed Engl 49:5344–5347

    Article  Google Scholar 

  10. Crumlin EJ, Mutoro E, Liu Z, Grass ME, Biegalski MD, Lee Y-L, Morgan D, Christen HM, Bluhm H, Shao-Horn Y (2012) Energy Environ Sci 5:6081

    Article  CAS  Google Scholar 

  11. Crumlin EJ, Ahn SJ, Lee D, Mutoro E, Biegalski MD, Christen HM, Shao-Horn Y (2012) J Electrochem Soc 159:F219–F225

    Article  CAS  Google Scholar 

  12. Jeen H, Bi Z, Choi WS, Chisholm MF, Bridges CA, Paranthaman MP, Lee HN (2013) Adv Mater 25:6459–6463

    Article  CAS  Google Scholar 

  13. Ogletree DF, Bluhm H, Lebedev G, Fadley CS, Hussain Z, Salmeron M (2002) Rev Sci Instrum 73:3872

    Article  CAS  Google Scholar 

  14. Crumlin EJ, Mutoro E, Hong WT, Biegalski MD, Christen HM, Liu Z, Bluhm H, Shao-Horn Y (2013) J Phys Chem C 117:16087–16094

    Article  CAS  Google Scholar 

  15. PAW van der Heide (2002) Surf Interface Anal 33:414–425

    Article  Google Scholar 

  16. Dulli H, Dowben PA, Liou S-H, Plummer EW (2000) Phys Rev B 62:14629–14632

    Article  Google Scholar 

  17. Kubicek M, Limbeck A, Frömling T, Hutter H, Fleig J (2011) J Electrochem Soc 158:B727

    Article  CAS  Google Scholar 

  18. Feng Z, Yacoby Y, Hong WT, Zhou H, Biegalski MD, Christen HM, Shao-Horn Y (2014) Energy Environ Sci 7:1166

    Article  CAS  Google Scholar 

  19. CD Wagner, AV Naumkin, A Kraut-Vass, JW Allison, CJ Powell, JR Rumble (2003) NIST Standard Reference Database 20. NIST XPS Database Version 3:251–252

  20. Mutoro E, Crumlin EJ, Pöpke H, Luerssen B, Amati M, Abyaneh MK, Biegalski MD, Christen HM, Gregoratti L, Janek J, Shao-Horn Y (2012) J Phys Chem Lett 3:40–44

    Article  CAS  Google Scholar 

  21. Jeen H, Choi WS, Biegalski MD, Folkman CM, Tung I-C, Fong DD, Freeland JW, Shin D, Ohta H, Chisholm MF, Lee HN (2013) Nat Mater 12:1057–1063

    Article  CAS  Google Scholar 

  22. Nemudry A, Rudolf P, Schollhorn R (1996) Chem Mater 8:2232–2238

    Article  CAS  Google Scholar 

  23. Muñoz A, delaCalle C, Alonso JA, Botta PM, Pardo V, Baldomir D, Rivas J (2008) Phys Rev B 78:054404

    Article  Google Scholar 

  24. Frank Ogletree D, Bluhm H, Hebenstreit ED, Salmeron M (2009) Nucl Instrum Methods Phys Res Sect A 601:151–160

    Article  CAS  Google Scholar 

  25. Whaley JA, McDaniel AH, El Gabaly F, Farrow RL, Grass ME, Hussain Z, Liu Z, Linne MA, Bluhm H, McCarty KF (2010) Rev Sci Instrum 81:086104

    Article  Google Scholar 

  26. Wang P, Yao L, Wang M, Wu W (2000) J Alloys Compd 311:53–56

    Article  CAS  Google Scholar 

  27. Gries WH (1996) Surf Interface Anal 24:38–50

    Article  CAS  Google Scholar 

  28. de la Calle C, Aguadero A, Alonso JA, Fernández-Díaz MT (2008) Solid State Sci 10:1924–1935

    Article  Google Scholar 

  29. Stoerzinger KA, Hong WT, Crumlin EJ, Bluhm H, Biegalski MD, Shao-Horn Y (2014) J Phys Chem C 118:19733–19741

    Article  CAS  Google Scholar 

  30. Bocquet AE, Mizokawa T, Saitoh T, Namatame H, Fujimori A (1992) Phys Rev B 46:3771–3784

    Article  CAS  Google Scholar 

  31. Zaanen J, Sawatzky GA (1990) J Solid State Chem 88:8–27

    Article  CAS  Google Scholar 

  32. Torrance JB, Lacorre P (1991) Physica C (Amsterdam) 182:351–364

    Article  CAS  Google Scholar 

  33. Pavone M, Ritzmann AM, Carter EA (2011) Energy Environ Sci 4:4933

    Article  CAS  Google Scholar 

  34. Mueller DN, Machala ML, Bluhm H, Chueh WC (2015) Nat Commun 6:6097

    Article  CAS  Google Scholar 

  35. Adler S, Chen X, Wilson J (2007) J Catal 245:91–109

    Article  CAS  Google Scholar 

  36. Lee Y-L, Kleis J, Rossmeisl J, Shao-Horn Y, Morgan D (2011) Energy Environ Sci 4:3966

    Article  CAS  Google Scholar 

  37. Vashook VV, Zinkevich MV, Ullmann H, Paulsen J, Trofimenko N, Teske K (1997) Solid State Ion 99:23–32

    Article  CAS  Google Scholar 

  38. ten Elshof JE, Lankhorst MHR, Bouwmeester HJM (1997) Solid State Ion 99:15–22

    Article  Google Scholar 

  39. Wang L, Merkle R, Maier J, Acartürk T, Starke U (2009) Appl Phys Lett 94:071908

    Article  Google Scholar 

Download references

Acknowledgments

We give many thanks to Andrey Shavorskiy and Hendrik Bluhm for assistance with NAP-XPS measurements. This work was supported in part by the MRSEC Program of the National Science Foundation under award number DMR-0819762 and the Skoltech-MIT Center for Electrochemical Energy. The Advanced Light Source was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contracts DE-AC02-06CH11357 and DE-AC02-05CH11231, respectively. The synthesis work at ORNL was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. K.A.S. acknowledges support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1122374.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shao-Horn.

Additional information

Wesley T. Hong and Kelsey A. Stoerzinger have contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2686 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, W.T., Stoerzinger, K.A., Crumlin, E.J. et al. Near-Ambient Pressure XPS of High-Temperature Surface Chemistry in Sr2Co2O5 Thin Films. Top Catal 59, 574–582 (2016). https://doi.org/10.1007/s11244-015-0532-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0532-4

Keywords

Navigation