Skip to main content
Log in

Nonlinear Optical Methods for Characterization of Molecular Structure and Surface Chemistry

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The principles, strengths and limitations of several nonlinear optical (NLO) methods for characterizing biological systems are reviewed. NLO methods encompass a wide range of approaches that can be used for real-time, in-situ characterization of biological systems, typically in a label-free mode. Multiphoton excitation fluorescence (MPEF) is widely used for high-quality imaging based on electronic transitions, but lacks interface specificity. Second harmonic generation (SHG) is a parametric process that has all the virtues of the two-photon version of MPEF, yielding a signal at twice the frequency of the excitation light, which provides interface specificity. Both SHG and MPEF can provide images with high structural contrast, but they typically lack molecular or chemical specificity. Other NLO methods such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) can provide high-sensitivity imaging with chemical information since Raman active vibrations are probed. However, CARS and SRS lack interface and surface specificity. A NLO method that provides both interface/surface specificity as well as molecular specificity is vibrational sum frequency generation (SFG) spectroscopy. Vibration modes that are both Raman and IR active are probed in the SFG process, providing the molecular specificity. SFG, like SHG, is a parametric process, which provides the interface and surface specificity. SFG is typically done in the reflection mode from planar samples. This has yielded rich and detailed information about the molecular structure of biomaterial interfaces and biomolecules interacting with their surfaces. However, 2-D systems have limitations for understanding the interactions of biomolecules and interfaces in the 3-D biological environment. The recent advances made in instrumentation and analysis methods for sum frequency scattering (SFS) now present the opportunity for SFS to be used to directly study biological solutions. By detecting the scattering at angles away from the phase-matched direction even centrosymmetric structures that are isotropic (e.g., spherical nanoparticles functionalized with self-assembled monolayers or biomolecules) can be probed. Often a combination of multiple NLO methods or a combination of a NLO method with other spectroscopic methods is required to obtain a full understanding of the molecular structure and surface chemistry of biomaterials and the biomolecules that interact with them. Using the right combination methods provides a powerful approach for characterizing biological materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Figure 1b is reproduced with permission from Ref. [53], copyright 2002 National Academy of Sciences

Fig. 3

Reproduced with permission from Ref. [64], copyright 2015 John Wiley and Sons

Fig. 4

b is reproduced with permission from Ref. [8], copyright 2008 American Association for the Advancement of Science

Fig. 5

Reproduced with permission from Ref. [79], copyright 2015 American Chemical Society

Fig. 6
Fig. 7

Reproduced with permission from Ref. [101], copyright 2003 American Chemical Society

Fig. 8

Reproduced with permission from Ref. [106], copyright 2013 American Chemical Society

Fig. 9

Reproduced with permission from Ref. [115], copyright 2009 American Institute of Physics Publishing

Fig. 10
Fig. 11

Reproduced with permission from Ref. [168], copyright 2010 American Institute of Physics

Fig. 12

Reproduced with permission from Ref. [174], copyright 2017 Nature Publishing Group

Similar content being viewed by others

References

  1. Hunt JH, Guyotsionnest P, Shen YR (1987) Observation of C-H stretch vibrations of monolayers of molecules optical sum-frequency generation. Chem Phys Lett 133(3):189–192. https://doi.org/10.1016/0009-2614(87)87049-5

    Article  CAS  Google Scholar 

  2. Guyotsionnest P, Hunt JH, Shen YR (1987) Sum-frequency vibrational spectroscopy of a Langmuir film—study of molecular-orientation of a two-dimensional system. Phys Rev Lett 59(14):1597–1600. https://doi.org/10.1103/PhysRevLett.59.1597

    Article  CAS  Google Scholar 

  3. Zhu XD, Suhr H, Shen YR (1987) Surface vibrational spectroscopy by infrared-visible sum frequency generation. Phys Rev B 35(6):3047–3050. https://doi.org/10.1103/PhysRevB.35.3047

    Article  CAS  Google Scholar 

  4. Bain CD, Davies PB, Ong TH, Ward RN, Brown MA (1991) Quantitative-analysis of monolayer composition by sum-frequency vibrational spectroscopy. Langmuir 7(8):1563–1566. https://doi.org/10.1021/la00056a003

    Article  CAS  Google Scholar 

  5. Superfine R, Guyotsionnest P, Hunt JH, Kao CT, Shen YR (1988) Surface vibrational spectroscopy of molecular adsorbates on metals and semiconductors by infrared visible sum-frequency generation. Surf Sci 200(1):L445–L450. https://doi.org/10.1016/0039-6028(88)90422-0

    Article  Google Scholar 

  6. Woodbury EJ, Ng WK (1962) Ruby laser operation in the near IR. Proc IRE 50:2347–2348

    Article  Google Scholar 

  7. Yakovlev VV, Petrov GI, Zhang HF, Noojin GD, Denton ML, Thomas RJ, Scully MO (2009) Stimulated Raman scattering: old physics, new applications. J Mod Opt 56(18–19):1970–1973. https://doi.org/10.1080/09500340903082671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He CW, Tsai JC, Kang JX, Xie XS (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322(5909):1857–1861. https://doi.org/10.1126/science.1165758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheng JX, Xie XS (2015) Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350(6264):10. https://doi.org/10.1126/science.aaa8870

    Article  CAS  Google Scholar 

  10. Chen WL, Hu PS, Ghazaryan A, Chen SJ, Tsai TH, Dong CY (2012) Quantitative analysis of multiphoton excitation autofluorescence and second harmonic generation imaging for medical diagnosis. Comput Med Imaging Graph 36(7):519–526. https://doi.org/10.1016/j.compmedimag.2012.06.003

    Article  PubMed  Google Scholar 

  11. Yue SH, Slipchenko MN, Cheng JX (2011) Multimodal nonlinear optical microscopy. Laser Photonics Rev 5(4):496–512. https://doi.org/10.1002/lpor.201000027

    Article  Google Scholar 

  12. Pezacki JP, Blake JA, Danielson DC, Kennedy DC, Lyn RK, Singaravelu R (2011) Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat Chem Biol 7(3):137–145. https://doi.org/10.1038/nchembio.525

    Article  CAS  PubMed  Google Scholar 

  13. Roy S, Covert PA, FitzGerald WR, Hore DK (2014) Biomolecular structure at solid-liquid interfaces as revealed by nonlinear optical spectroscopy. Chem Rev 114(17):8388–8415. https://doi.org/10.1021/cr400418b

    Article  CAS  PubMed  Google Scholar 

  14. Yan ECY, Fu L, Wang ZG, Liu W (2014) Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem Rev 114(17):8471–8498. https://doi.org/10.1021/cr4006044

    Article  CAS  PubMed  Google Scholar 

  15. Ding B, Jasensky J, Li YX, Chen Z (2016) Engineering and characterization of peptides and proteins at surfaces and interfaces: a case study in surface-sensitive vibrational spectroscopy. Acc Chem Res 49(6):1149–1157. https://doi.org/10.1021/acs.accounts.6b00091

    Article  CAS  PubMed  Google Scholar 

  16. Muiznieks LD, Keeley FW (2013) Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochimica Et Biophysica Acta-Mol Basis Dis 1832(7):866–875. https://doi.org/10.1016/j.bbadis.2012.11.022

    Article  CAS  Google Scholar 

  17. Cooper GM, Hausman RE (2015) The cell: a molecular approach, 7 edn. Sinauer Associates, Sunderland

    Google Scholar 

  18. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C (1988) Focal adhesions—transmembrane junctions between the extracellular-matrix and the cytoskeleton. Annu Rev Cell Biol 4:487–525. https://doi.org/10.1146/annurev.cb.04.110188.002415

    Article  CAS  PubMed  Google Scholar 

  19. Murugan R, Ramakrishna S (2007) Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng 13(8):1845–1866. https://doi.org/10.1089/ten.2006.0078

    Article  CAS  PubMed  Google Scholar 

  20. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143. https://doi.org/10.1126/science.1116995

    Article  CAS  PubMed  Google Scholar 

  21. Hardy J, Selkoe DJ (2002) Medicine—the amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. https://doi.org/10.1126/science.1072994

    Article  CAS  PubMed  Google Scholar 

  22. Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148(6):1188–1203. https://doi.org/10.1016/j.cell.2012.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Selkoe DJ, Schenk D (2003) Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584. https://doi.org/10.1146/annurev.pharmtox.43.100901.140248

    Article  CAS  PubMed  Google Scholar 

  24. Thanh NTK, Green LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5(3):213–230. https://doi.org/10.1016/j.nantod.2010.05.003

    Article  CAS  Google Scholar 

  25. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160. https://doi.org/10.1038/nrd1632

    Article  CAS  PubMed  Google Scholar 

  26. Castner DG (2017) Biomedical surface analysis: evolution and future directions. Biointerphases 12(2):11. https://doi.org/10.1116/1.4982169

    Article  CAS  Google Scholar 

  27. Apte JS, Collier G, Latour RA, Gamble LJ, Castner DG (2010) XPS and ToF-SIMS Investigation of alpha-helical and beta-strand peptide adsorption onto SAMs. Langmuir 26(5):3423–3432. https://doi.org/10.1021/la902888y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Belu AM, Graham DJ, Castner DG (2003) Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials 24(21):3635–3653. https://doi.org/10.1016/s0142-9612(03)00159-5

    Article  CAS  PubMed  Google Scholar 

  29. Rodahl M, Hook F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, Voinova M, Kasemo B (1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107:229–246. https://doi.org/10.1039/a703137h

    Article  CAS  Google Scholar 

  30. Reimhult E, Hook F, Kasemo B (2003) Intact vesicle adsorption and supported biomembrane formation from vesicles in solution: Influence of surface chemistry, vesicle size, temperature, and osmotic pressure. Langmuir 19(5):1681–1691. https://doi.org/10.1021/la0263920

    Article  CAS  Google Scholar 

  31. Keller CA, Kasemo B (1998) Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J 75(3):1397–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liedberg B, Nylander C, Lundstrom I (1983) Surface-plasmon resonance for gas-detection and biosensing. Sens Actuators 4(2):299–304. https://doi.org/10.1016/0250-6874(83)85036-7

    Article  CAS  Google Scholar 

  33. Besenicar M, Macek P, Lakey JH, Anderluh G (2006) Surface plasmon resonance in protein-membrane interactions. Chem Phys Lipid 141(1–2):169–178. https://doi.org/10.1016/j.chemphyslip.2006.02.010

    Article  CAS  Google Scholar 

  34. Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35(4):369–430. https://doi.org/10.1017/s0033583502003815

    Article  CAS  PubMed  Google Scholar 

  35. Shen YR (2002) The principles of nonlinear optics. Wiley, New York

    Google Scholar 

  36. Boyd RW (2008) Nonlinear optics, 3 edn. Academic Press, Oxford

    Google Scholar 

  37. Shen YR (1994) Surfaces probed by nonlinear optics. Surf Sci 299(1–3):551–562. https://doi.org/10.1016/0039-6028(94)90681-5

    Article  Google Scholar 

  38. Yakovlev VV (2009) Biochemical applications of nonlinear optical spectroscopy optical science and engineering. CRC Press, Boca Raton

    Book  Google Scholar 

  39. Simpson GJ (2017) Nonlinear optical polarization analysis in chemistry and biology. Cambridge molecular science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  40. Risselada HJ, Marrink SJ (2009) Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. Phys Chem Chem Phys 11(12):2056–2067. https://doi.org/10.1039/b818782g

    Article  CAS  PubMed  Google Scholar 

  41. Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20(16):6800–6807. https://doi.org/10.1021/la0497200

    Article  PubMed  Google Scholar 

  42. Grainger DW, Castner DG (2008) Nanobiomaterials and nanoanalysis: opportunities for improving the science to benefit biomedical technologies. Adv Mater 20(5):867–877. https://doi.org/10.1002/adma.200701760

    Article  CAS  Google Scholar 

  43. Eisenthal KB (2006) Second harmonic spectroscopy of aqueous nano- and microparticle interfaces. Chem Rev 106(4):1462–1477. https://doi.org/10.1021/cr0403685

    Article  CAS  PubMed  Google Scholar 

  44. Roke S, Gonella G (2012) Nonlinear light scattering and spectroscopy of particles and droplets in liquids. In: Johnson MA, Martinez TJ (eds) Annu Rev Phys Chem 63:353–378. https://doi.org/10.1146/annurev-physchem-032511-143748

    Article  CAS  PubMed  Google Scholar 

  45. Wang H, Yan ECY, Borguet E, Eisenthal KB (1996) Second harmonic generation from the surface of centrosymmetric particles in bulk solution. Chem Phys Lett 259(1–2):15–20. https://doi.org/10.1016/0009-2614(96)00707-5

    Article  CAS  Google Scholar 

  46. Roke S, Roeterdink WG, Wijnhoven J, Petukhov AV, Kleyn AW, Bonn M (2003) Vibrational sum frequency scattering from a submicron suspension. Phys Rev Lett 91(25):258302. https://doi.org/10.1103/PhysRevLett.91.258302

    Article  CAS  PubMed  Google Scholar 

  47. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11):1368–1376. https://doi.org/10.1038/nbt899

    Article  CAS  Google Scholar 

  48. Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100(12):7075–7080. https://doi.org/10.1073/pnas.0832308100

    Article  CAS  PubMed  Google Scholar 

  49. Liu HW, Liu YC, Wang P, Zhang XB (2017) Molecular engineering of two-photon fluorescent probes for bioimaging applications. Methods Appl Fluoresc 5(1):24. https://doi.org/10.1088/2050-6120/aa61b0

    Article  CAS  Google Scholar 

  50. Kwan AC, Duff K, Gouras GK, Webb WW (2009) Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation. Opt Express 17(5):3679–3689. https://doi.org/10.1364/oe.17.003679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Johansson PK, Koelsch P (2017) Label-free imaging of amyloids using their intrinsic linear and nonlinear optical properties. Biomed Opt Express 8(2):743–756. https://doi.org/10.1364/boe.8.000743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee JH, Kim DH, Song WK, Oh MK, Ko DK (2015) Label-free imaging and quantitative chemical analysis of Alzheimer’s disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy. J Biomed Opt 20(5):7. https://doi.org/10.1117/1.jbo.20.5.056013

    Article  Google Scholar 

  53. Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99(17):11014–11019. https://doi.org/10.1073/pnas.172368799

    Article  CAS  PubMed  Google Scholar 

  54. Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243(3):221–226. https://doi.org/10.1111/j.1365-2818.2011.03532.x

    Article  CAS  PubMed  Google Scholar 

  55. Gauderon R, Lukins PB, Sheppard CJR (2001) Optimization of second-harmonic generation microscopy. Micron 32(7):691–700. https://doi.org/10.1016/s0968-4328(00)00066-4

    Article  CAS  PubMed  Google Scholar 

  56. Moad AJ, Simpson GJ (2004) A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies. J Phys Chem B 108(11):3548–3562. https://doi.org/10.1021/jp035362i

    Article  CAS  Google Scholar 

  57. Chen WL, Li TH, Su PJ, Chou CK, Fwu PT, Lin SJ, Kim D, So PTC, Dong CY (2009) Second harmonic generation chi tensor microscopy for tissue imaging. Appl Phys Lett 94(18):3. https://doi.org/10.1063/1.3132062

    Article  CAS  Google Scholar 

  58. Chen XY, Nadiarynkh O, Plotnikov S, Campagnola PJ (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7(4):654–669. https://doi.org/10.1038/nprot.2012.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pavone FS, Campagnola PJ (2014) Second harmonic generation imaging. Series in cellular and clinical imaging. CRC Press, Boca Raton

    Google Scholar 

  60. Williams RM, Zipfel WR, Webb WW (2005) Interpreting second-harmonic generation images of collagen I fibrils. Biophys J 88(2):1377–1386. https://doi.org/10.1529/biophysj.104.047308

    Article  CAS  PubMed  Google Scholar 

  61. Stoller P, Kim BM, Rubenchik AM, Reiser KM, Da Silva LB (2002) Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. J Biomed Opt 7(2):205–214. https://doi.org/10.1117/1.1431967

    Article  PubMed  Google Scholar 

  62. Tuer AE, Krouglov S, Prent N, Cisek R, Sandkuijl D, Yasufuku K, Wilson BC, Barzda V (2011) Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy. J Phys Chem B 115(44):12759–12769. https://doi.org/10.1021/jp206308k

    Article  CAS  PubMed  Google Scholar 

  63. Jiang XS, Zhong JZ, Liu YC, Yu HB, Zhuo SM, Chen JX (2011) Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy. Scanning 33(1):53–56. https://doi.org/10.1002/sca.20219

    Article  CAS  PubMed  Google Scholar 

  64. Kumar R, Gronhaug KM, Romijn EI, Finnoy A, Davies CL, Drogset JO, Lilledahl MB (2015) Polarization second harmonic generation microscopy provides quantitative enhanced molecular specificity for tissue diagnostics. J Biophotonics 8(9):730–739. https://doi.org/10.1002/jbio.201400086

    Article  CAS  PubMed  Google Scholar 

  65. Ditcham WGF, Al-Obaidi AHR, McStay D, Mottram TT, Brownlie J, Thompson I (2001) An immunosensor with potential for the detection of viral antigens in body fluids, based on surface second harmonic generation. Biosens Bioelectron 16(3):221–224. https://doi.org/10.1016/s0956-5663(00)00134-2

    Article  CAS  PubMed  Google Scholar 

  66. Sly KL, Conboy JC (2014) Determination of multivalent protein-ligand binding kinetics by second-harmonic correlation spectroscopy. Anal Chem 86(22):11045–11054. https://doi.org/10.1021/ac500094v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nuriya M, Fukushima S, Momotake A, Shinotsuka T, Yasui M, Arai T (2016) Multimodal two-photon imaging using a second harmonic generation-specific dye. Nat Commun 7:10. https://doi.org/10.1038/ncomms11557

    Article  CAS  Google Scholar 

  68. Reeve JE, Anderson HL, Clays K (2010) Dyes for biological second harmonic generation imaging. Phys Chem Chem Phys 12(41):13484–13498. https://doi.org/10.1039/c003720f

    Article  CAS  PubMed  Google Scholar 

  69. Cheng JX, Xie XS (2004) Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J Phys Chem B 108(3):827–840. https://doi.org/10.1021/jp035693v

    Article  CAS  Google Scholar 

  70. Rodriguez LG, Lockett SJ, Holtom GR (2006) Coherent anti-Stokes Raman scattering microscopy: a biological review. Cytometry A 69A(8):779–791. https://doi.org/10.1002/cyto.a.20299

    Article  CAS  Google Scholar 

  71. Evans CL, Xie XS (2008) Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem 1:883–909 https://doi.org/10.1146/annurev.anchem.1.031207.112754

    Article  CAS  Google Scholar 

  72. Volkmer A (2005) Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy. J Phys D 38(5):R59–R81. https://doi.org/10.1088/0022-3727/38/5/r01

    Article  Google Scholar 

  73. Liu YX, Lee YJ, Cicerone MT (2009) Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform. Opt Lett 34(9):1363–1365

    Article  PubMed  PubMed Central  Google Scholar 

  74. Camp CH, Lee YJ, Heddleston JM, Hartshorn CM, Walker ARH, Rich JN, Lathia JD, Cicerone MT (2014) High-speed coherent Raman fingerprint imaging of biological tissues. Nat Photonics 8(8):627–634. https://doi.org/10.1038/nphoton.2014.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fu Y, Huff TB, Wang HW, Wang HF, Cheng JX (2008) Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy. Opt Express 16(24):19396–19409. https://doi.org/10.1364/oe.16.019396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kiskis J, Fink H, Nyberg L, Thyr J, Li JY, Enejder A (2015) Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy. Sci Rep 5:13489. https://doi.org/10.1038/srep13489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tipping WJ, Lee M, Serrels A, Brunton VG, Hulme AN (2016) Stimulated Raman scattering microscopy: an emerging tool for drug discovery. Chem Soc Rev 45(8):2075–2089. https://doi.org/10.1039/c5cs00693g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Min W, Freudiger CW, Lu SJ, Xie XS (2011) Coherent nonlinear optical imaging: beyond fluorescence microscopy. In: Leone SR, Cremer PS, Groves JT, Johnson MA (eds) Annu Rev Phys Chem 62:507–530. https://doi.org/10.1146/annurev.physchem.012809.103512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Duboisset J, Berto P, Gasecka P, Bioud FZ, Ferrand P, Rigneault H, Brasselet S (2015) Molecular orientational order probed by coherent anti-Stokes raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study. J Phys Chem B 119(7):3242–3249. https://doi.org/10.1021/jp5113813

    Article  CAS  PubMed  Google Scholar 

  80. Hofer M, Balla NK, Brasselet S (2017) High-speed polarization-resolved coherent Raman scattering imaging. Optica 4(7):795–801. https://doi.org/10.1364/optica.4.000795

    Article  Google Scholar 

  81. Davis RP, Moad AJ, Goeken GS, Wampler RD, Simpson GJ (2008) Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies. J Phys Chem B 112(18):5834–5848. https://doi.org/10.1021/jp709961k

    Article  CAS  PubMed  Google Scholar 

  82. Zimmerley M, Mahou P, Debarre D, Schanne-Klein MC, Beaurepaire E (2013) Probing ordered lipid assemblies with polarized third-harmonic-generation microscopy. Phys Rev X 3(1):16. https://doi.org/10.1103/PhysRevX.3.011002

    Article  CAS  Google Scholar 

  83. Bioud FZ, Gasecka P, Ferrand P, Rigneault H, Duboisset J, Brasselet S (2014) Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy. Phys Rev A 89(1):10. https://doi.org/10.1103/PhysRevA.89.013836

    Article  CAS  Google Scholar 

  84. Bonn M, Muller M, Rinia HA, Burger KNJ (2009) Imaging of chemical and physical state of individual cellular lipid droplets using multiplex CARS microscopy. J Raman Spectrosc 40(7):763–769. https://doi.org/10.1002/jrs.2253

    Article  CAS  Google Scholar 

  85. Fu D, Lu FK, Zhang X, Freudiger C, Pernik DR, Holtom G, Xie XS (2012) Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J Am Chem Soc 134(8):3623–3626. https://doi.org/10.1021/ja210081h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fu D, Holtom G, Freudiger C, Zhang X, Xie XS (2013) Hyperspectral Imaging with stimulated Raman scattering by chirped femtosecond lasers. J Phys Chem B 117(16):4634–4640. https://doi.org/10.1021/jp308938t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vidal F, Tadjeddine A (2005) Sum-frequency generation spectroscopy of interfaces. Rep Prog Phys 68(5):1095–1127. https://doi.org/10.1088/0034-4885/68/5/r03

    Article  CAS  Google Scholar 

  88. Wang HF, Velarde L, Gan W, Fu L (2015) Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation. In: Johnson MA, Martinez TJ (eds) Annu Rev Phys Chem 66:189–216. https://doi.org/10.1146/annurev-physchem-040214-121322

    Article  CAS  PubMed  Google Scholar 

  89. Foster RN, Johansson PK, Tom NR, Koelsch P, Castner DG (2015) Experimental design and analysis of activators regenerated by electron transfer-atom transfer radical polymerization experimental conditions for grafting sodium styrene sulfonate from titanium substrates. J Vac Sci Technol A 33(5):11. https://doi.org/10.1116/1.4929506

    Article  CAS  Google Scholar 

  90. Song S, Koelsch P, Weidner T, Castner DG (2013) Sodium dodecyl sulfate adsorption onto positively charged surfaces: monolayer formation with opposing headgroup orientations. Langmuir 29:12710–12719

    Article  CAS  PubMed  Google Scholar 

  91. Haupert LM, Simpson GJ (2009) Chirality in nonlinear optics. Annu Rev Phys Chem 60:345–365. https://doi.org/10.1146/annurev.physchem.59.032607.093712

    Article  CAS  PubMed  Google Scholar 

  92. Fu L, Wang ZG, Yan ECY (2011) Chiral vibrational structures of proteins at interfaces probed by sum frequency generation spectroscopy. Int J Mol Sci 12(12):9404–9425. https://doi.org/10.3390/ijms12129404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang J, Chen XY, Clarke ML, Chen Z (2005) Detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ. Proc Natl Acad Sci USA 102(14):4978–4983. https://doi.org/10.1073/pnas.0501206102

    Article  CAS  PubMed  Google Scholar 

  94. Yan ECY, Wang ZG, Fu L (2015) Proteins at interfaces probed by chiral vibrational sum frequency generation spectroscopy. J Phys Chem B 119(7):2769–2785. https://doi.org/10.1021/jp508926e

    Article  CAS  PubMed  Google Scholar 

  95. Fu L, Liu J, Yan ECY (2011) Chiral sum frequency generation spectroscopy for characterizing protein secondary structures at interfaces. J Am Chem Soc 133(21):8094–8097. https://doi.org/10.1021/ja201575e

    Article  CAS  PubMed  Google Scholar 

  96. Roeters SJ, van Dijk CN, Torres-Knoop A, Backus EHG, Campen RK, Bonn M, Woutersen S (2013) Determining in situ protein conformation and orientation from the amide-I sum-frequency generation spectrum: theory and experiment. J Phys Chem A 117(29):6311–6322. https://doi.org/10.1021/jp401159r

    Article  CAS  PubMed  Google Scholar 

  97. Nguyen KT, King JT, Chen Z (2010) Orientation determination of interfacial beta-sheet structures in situ. J Phys Chem B 114(25):8291–8300. https://doi.org/10.1021/jp102343h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nguyen KT, Le Clair SV, Ye SJ, Chen Z (2009) Orientation determination of protein helical secondary structures using linear and nonlinear vibrational spectroscopy. J Phys Chem B 113(36):12169–12180. https://doi.org/10.1021/jp904153z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Harrison ET, Weidner T, Castner DG, Interlandi G (2017) Predicting the orientation of protein G B1 on hydrophobic surfaces using Monte Carlo simulations. Biointerphases 12(2):02D401. https://doi.org/10.1116/1.4971381

    Article  CAS  Google Scholar 

  100. Kim J, Chou KC, Somorjai GA (2003) Structure and dynamics of acetonitrile at the air/liquid interface of binary solutions studied by infrared-visible sum frequency generation. J Phys Chem B 107(7):1592–1596. https://doi.org/10.1021/jp021227e

    Article  CAS  Google Scholar 

  101. Kim J, Somorjai GA (2003) Molecular packing of lysozyme, fibrinogen, and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared-visible sum frequency generation and fluorescence microscopy. J Am Chem Soc 125(10):3150–3158. https://doi.org/10.1021/ja028987n

    Article  CAS  PubMed  Google Scholar 

  102. Wang J, Paszti Z, Even MA, Chen Z (2002) Measuring polymer surface ordering differences in air and water by sum frequency generation vibrational spectroscopy. J Am Chem Soc 124(24):7016–7023. https://doi.org/10.1021/ja012387r

    Article  CAS  PubMed  Google Scholar 

  103. Wang J, Chen CY, Buck SM, Chen Z (2001) Molecular chemical structure on poly(methyl methacrylate) (PMMA) surface studied by sum frequency generation (SFG) vibrational spectroscopy. J Phys Chem B 105(48):12118–12125. https://doi.org/10.1021/jp013161d

    Article  CAS  Google Scholar 

  104. Zhuang X, Miranda PB, Kim D, Shen YR (1999) Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys Rev B 59(19):12632–12640. https://doi.org/10.1103/PhysRevB.59.12632

    Article  CAS  Google Scholar 

  105. Weidner T, Breen NF, Li K, Drobny GP, Castner DG (2010) Sum frequency generation and solid-state NMR study of the structure, orientation, and dynamics of polystyrene-adsorbed peptides. Proc Natl Acad Sci USA 107(30):13288–13293. https://doi.org/10.1073/pnas.1003832107

    Article  PubMed  Google Scholar 

  106. Liu YW, Ogorzalek TL, Yang P, Schroeder MM, Marsh ENG, Chen Z (2013) Molecular orientation of enzymes attached to surfaces through defined chemical linkages at the solid-liquid interface. J Am Chem Soc 135(34):12660–12669. https://doi.org/10.1021/ja403672s

    Article  CAS  PubMed  Google Scholar 

  107. Badieyan S, Wang QM, Zou XQ, Li YX, Herron M, Abbott NL, Chen Z, Marsh ENG (2017) Engineered surface-immobilized enzyme that retains high levels of catalytic activity in air. J Am Chem Soc 139(8):2872–2875. https://doi.org/10.1021/jacs.6b12174

    Article  CAS  PubMed  Google Scholar 

  108. Shen L, Cheng KCK, Schroeder M, Yang P, Marsh ENG, Lahann J, Chen Z (2016) Immobilization of enzyme on a polymer surface. Surf Sci 648:53–59. https://doi.org/10.1016/j.susc.2015.10.046

    Article  CAS  Google Scholar 

  109. Shen L, Ulrich NW, Mello CM, Chen Z (2015) Determination of conformation and orientation of immobilized peptides and proteins at buried interfaces. Chem Phys Lett 619:247–255. https://doi.org/10.1016/j.cplett.2014.10.035

    Article  CAS  Google Scholar 

  110. Weidner T, Castner DG (2013) SFG analysis of surface bound proteins: a route towards structure determination. Phys Chem Chem Phys 15(30):12516–12524. https://doi.org/10.1039/c3cp50880c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Baugh L, Weidner T, Baio JE, Nguyen PCT, Gamble LJ, Slayton PS, Castner DG (2010) Probing the orientation of surface-immobilized protein G B1 using ToF-SIMS, sum frequency generation, and NEXAFS spectroscopy. Langmuir 26(21):16434–16441. https://doi.org/10.1021/la1007389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hennig R, Heidrich J, Saur M, Schmuser L, Roeters SJ, Hellmann N, Woutersen S, Bonn M, Weidner T, Markl J, Schneider D (2015) IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nat Commun 6:7018. https://doi.org/10.1038/ncomms8018

    Article  CAS  PubMed  Google Scholar 

  113. Covert PA, Hore DK (2015) Assessing the gold standard: the complex vibrational nonlinear susceptibility of metals. J Phys Chem C 119(1):271–276. https://doi.org/10.1021/jp508286q

    Article  CAS  Google Scholar 

  114. Jena KC, Covert PA, Hall SA, Hore DK (2011) Absolute orientation of ester side chains on the PMMA surface. J Phys Chem C 115(31):15570–15574. https://doi.org/10.1021/jp205712c

    Article  CAS  Google Scholar 

  115. Nihonyanagi S, Yamaguchi S, Tahara T (2009) Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. J Chem Phys 130(20):5. https://doi.org/10.1063/1.3135147

    Article  CAS  Google Scholar 

  116. Mondal JA, Nihonyanagi S, Yamaguchi S, Tahara T (2010) Structure and orientation of water at charged lipid monolayer/water interfaces probed by heterodyne-detected vibrational sum frequency generation spectroscopy. J Am Chem Soc 132(31):10656–10657. https://doi.org/10.1021/ja104327t

    Article  CAS  PubMed  Google Scholar 

  117. Stiopkin IV, Jayathilake HD, Bordenyuk AN, Benderskii AV (2008) Heterodyne-detected vibrational sum frequency generation spectroscopy. J Am Chem Soc 130(7):2271–2275. https://doi.org/10.1021/ja076708w

    Article  CAS  PubMed  Google Scholar 

  118. Stiopkin IV, Weeraman C, Pieniazek PA, Shalhout FY, Skinner JL, Benderskii AV (2011) Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474(7350):192–195. https://doi.org/10.1038/nature10173

    Article  CAS  PubMed  Google Scholar 

  119. Superfine R, Huang JY, Shen YR (1990) Phase measurement for surface infrared visible sum-frequency generation. Opt Lett 15(22):1276–1278. https://doi.org/10.1364/ol.15.001276

    Article  CAS  PubMed  Google Scholar 

  120. Ji N, Ostroverkhov V, Chen CY, Shen YR (2007) Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains. J Am Chem Soc 129(33):10056–10057. https://doi.org/10.1021/ja071989t

    Article  CAS  PubMed  Google Scholar 

  121. Schmuser L, Roeters S, Lutz H, Woutersen S, Bonn M, Weidner T (2017) Determination of absolute orientation of protein alpha-helices at interfaces using phase-resolved sum frequency generation spectroscopy. J Phys Chem Lett 8(13):3101–3105. https://doi.org/10.1021/acs.jpclett.7b01059

    Article  CAS  PubMed  Google Scholar 

  122. Du Q, Superfine R, Freysz E, Shen YR (1993) Vibrational spectroscopy of water at the vapor water interface. Phys Rev Lett 70(15):2313–2316. https://doi.org/10.1103/PhysRevLett.70.2313

    Article  CAS  PubMed  Google Scholar 

  123. Sanchez MA, Kling T, Ishiyama T, van Zadel MJ, Bisson PJ, Mezger M, Jochum MN, Cyran JD, Smit WJ, Bakker HJ, Shultz MJ, Morita A, Donadio D, Nagata Y, Bonn M, Backus EHG (2017) Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. Proc Natl Acad Sci USA 114(2):227–232. https://doi.org/10.1073/pnas.1612893114

    Article  CAS  PubMed  Google Scholar 

  124. Wang J, Buck SM, Chen Z (2002) Sum frequency generation vibrational spectroscopy studies on protein adsorption. J Phys Chem B 106(44):11666–11672. https://doi.org/10.1021/jp021363j

    Article  CAS  Google Scholar 

  125. Wang J, Even MA, Chen XY, Schmaier AH, Waite JH, Chen Z (2003) Detection of amide I signals of interfacial proteins in situ using SFG. J Am Chem Soc 125(33):9914–9915. https://doi.org/10.1021/ja036373s

    Article  CAS  PubMed  Google Scholar 

  126. Chen XY, Wang J, Sniadecki JJ, Even MA, Chen Z (2005) Probing alpha-helical and beta-sheet structures of peptides at solid/liquid interfaces with SFG. Langmuir 21(7):2662–2664. https://doi.org/10.1021/la050048w

    Article  CAS  PubMed  Google Scholar 

  127. Wang J, Clarke ML, Chen XY, Even MA, Johnson WC, Chen Z (2005) Molecular studies on protein conformations at polymer/liquid interfaces using sum frequency generation vibrational spectroscopy. Surf Sci 587(1–2):1–11. https://doi.org/10.1016/j.susc.2005.04.034

    Article  CAS  Google Scholar 

  128. Chen XY, Wang J, Boughton AP, Kristalyn CB, Chen Z (2007) Multiple orientation of melittin inside a single lipid bilayer determined by combined vibrational spectroscopic studies. J Am Chem Soc 129(5):1420–1427. https://doi.org/10.1021/ja067446I

    Article  CAS  PubMed  Google Scholar 

  129. Le Clair SV, Nguyen K, Chen Z (2009) Sum frequency generation studies on bioadhesion: elucidating the molecular structure of proteins at interfaces. J Adhes 85(8):484–511. https://doi.org/10.1080/00218460902996374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nguyen KT, Soong R, Im SC, Waskell L, Ramamoorthy A, Chen Z (2010) Probing the spontaneous membrane insertion of a tail-anchored membrane protein by sum frequency generation spectroscopy. J Am Chem Soc 132(43):15112–15115. https://doi.org/10.1021/ja106508f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ye SJ, Nguyen KT, Boughton AP, Mello CM, Chen Z (2010) Orientation difference of chemically immobilized and physically adsorbed biological molecules on polymers detected at the solid/liquid interfaces in situ. Langmuir 26(9):6471–6477. https://doi.org/10.1021/la903932w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu YW, Jasensky J, Chen Z (2012) Molecular interactions of proteins and peptides at interfaces studied by sum frequency generation vibrational spectroscopy. Langmuir 28(4):2113–2121. https://doi.org/10.1021/la203823t

    Article  CAS  PubMed  Google Scholar 

  133. Weidner T, Dubey M, Breen NF, Ash J, Baio JE, Jaye C, Fischer DA, Drobny GP, Castner DG (2012) Direct observation of phenylalanine orientations in statherin bound to hydroxyapatite surfaces. J Am Chem Soc 134(21):8750–8753. https://doi.org/10.1021/ja301711w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fu L, Wang ZG, Psciuk BT, Xiao DQ, Batista VS, Yan ECY (2015) Characterization of parallel beta-sheets at interfaces by chiral sum frequency generation spectroscopy. J Phys Chem Lett 6(8):1310–1315. https://doi.org/10.1021/acs.jpclett.5b00326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. vandenAkker CC, Engel MFM, Velikov KP, Bonn M, Koenderink GH (2011) Morphology and persistence length of amyloid fibrils are correlated to peptide molecular structure. J Am Chem Soc 133(45):18030–18033. https://doi.org/10.1021/ja206513r

    Article  CAS  PubMed  Google Scholar 

  136. Fu L, Wang ZG, Batista VS, Yan ECY (2016) New insights from sum frequency generation vibrational spectroscopy into the interactions of islet amyloid polypeptides with lipid membranes. J Diabetes Res. https://doi.org/10.1155/2016/7293063

    Article  PubMed  PubMed Central  Google Scholar 

  137. Liu J, Conboy JC (2004) Phase transition of a single lipid bilayer measured by sum-frequency vibrational spectroscopy. J Am Chem Soc 126(29):8894–8895. https://doi.org/10.1021/ja031570c

    Article  CAS  PubMed  Google Scholar 

  138. Liu J, Conboy JC (2005) 1,2-Diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy. Biophys J 89(4):2522–2532. https://doi.org/10.1529/biophysj.105.065672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Brown KL, Conboy JC (2013) Lipid flip-flop in binary membranes composed of phosphatidylserine and phosphatidylcholine. J Phys Chem B 117(48):15041–15050. https://doi.org/10.1021/jp409672q

    Article  CAS  PubMed  Google Scholar 

  140. Weeraman C, Yatawara AK, Bordenyuk AN, Benderskii AV (2006) Effect of nanoscale geometry on molecular conformation: vibrational sum-frequency generation of alkanethiols on gold nanoparticles. J Am Chem Soc 128(44):14244–14245. https://doi.org/10.1021/ja065756y

    Article  CAS  PubMed  Google Scholar 

  141. Zorn G, Dave SR, Weidner T, Gao X, Castner DG (2016) Direct characterization of polymer encapsulated CdSe/CdS/ZnS quantum dots. Surf Sci 648:339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Howell C, Hamoudi H, Heissler S, Koelsch P, Zharnikov M (2011) Orientation changes in surface-bound hybridized DNA undergoing preparation for ex situ spectroscopic measurements. Chem Phys Lett 513(4–6):267–270. https://doi.org/10.1016/j.cplett.2011.07.096

    Article  CAS  Google Scholar 

  143. Howell C, Schmidt R, Kurz V, Koelsch P (2008) Sum-frequency-generation spectroscopy of DNA films in air and aqueous environments. Biointerphases 3(3):FC47–FC51. https://doi.org/10.1116/1.3064107

    Article  Google Scholar 

  144. Howell C, Zhao JL, Koelsch P, Zharnikov M (2011) Hybridization in ssDNA films-a multi-technique spectroscopy study. Phys Chem Chem Phys 13(34):15512–15522. https://doi.org/10.1039/c1cp20374f

    Article  CAS  PubMed  Google Scholar 

  145. Asanuma H, Noguchi H, Uosalki K, Yu HZ (2008) Metal cation-induced deformation of DNA self-assembled monolayers on silicon: vibrational sum frequency generation spectroscopy. J Am Chem Soc 130(25):8016–8022. https://doi.org/10.1021/ja801023r

    Article  CAS  PubMed  Google Scholar 

  146. Diesner MO, Welle A, Kazanci M, Kaiser P, Spatz J, Koelsch P (2011) In vitro observation of dynamic ordering processes in the extracellular matrix of living, adherent cells. Biointerphases 6(4):171–179. https://doi.org/10.1116/1.3651142

    Article  CAS  PubMed  Google Scholar 

  147. Diesner MO, Howell C, Kurz V, Verreault D, Koelsch P (2010) In vitro characterization of surface properties through living cells. J Phys Chem Lett 1(15):2339–2342. https://doi.org/10.1021/jz100742j

    Article  CAS  Google Scholar 

  148. Howell C, Diesner MO, Grunze M, Koelsch P (2008) Probing the extracellular matrix with sum-frequency-generation spectroscopy. Langmuir 24(24):13819–13821. https://doi.org/10.1021/la8027463

    Article  CAS  PubMed  Google Scholar 

  149. Cimatu KA, Baldelli S (2009) Chemical microscopy of surfaces by sum frequency generation imaging. J Phys Chem C 113(38):16575–16588. https://doi.org/10.1021/jp904015s

    Article  CAS  Google Scholar 

  150. Cimatu K, Moore HJ, Barriet D, Chinwangso P, Lee TR, Baldelli S (2008) Sum frequency generation imaging microscopy of patterned self-assembled monolayers with terminal -CH3, -OCH3, -CF2CF3, -C = C, -phenyl, and -cyclopropyl groups. J Phys Chem C 112(37):14529–14537. https://doi.org/10.1021/jp804707w

    Article  CAS  Google Scholar 

  151. Fang M, Baldelli S (2017) Surface-induced heterogeneity analysis of an alkanethiol monolayer on microcrystalline copper surface using sum frequency generation imaging microscopy. J Phys Chem C 121(3):1591–1601. https://doi.org/10.1021/acs.jpcc.6b09403

    Article  CAS  Google Scholar 

  152. Wang HY, Gao T, Xiong W (2017) Self-phase-stabilized heterodyne vibrational sum frequency generation microscopy. ACS Photonics 4(7):1839–1845. https://doi.org/10.1021/acsphotonics.7b00411

    Article  CAS  Google Scholar 

  153. Wang HF, Yan ECY, Liu Y, Eisenthal KB (1998) Energetics and population of molecules at microscopic liquid and solid surfaces. J Phys Chem B 102(23):4446–4450. https://doi.org/10.1021/jp980491y

    Article  CAS  Google Scholar 

  154. Yan ECY, Eisenthal KB (1999) Probing the interface of microscopic clay particles in aqueous solution by second harmonic generation. J Phys Chem B 103(29):6056–6060. https://doi.org/10.1021/jp990807h

    Article  CAS  Google Scholar 

  155. Yan ECY, Liu Y, Eisenthal KB (1998) New method for determination of surface potential of microscopic particles by second harmonic generation. J Phys Chem B 102(33):6331–6336. https://doi.org/10.1021/jp981335u

    Article  CAS  Google Scholar 

  156. Dadap JI, Shan J, Eisenthal KB, Heinz TF (1999) Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material. Phys Rev Lett 83(20):4045–4048. https://doi.org/10.1103/PhysRevLett.83.4045

    Article  CAS  Google Scholar 

  157. Yan ECY, Eisenthal KB (2000) Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation. Biophys J 79(2):898–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu Y, Yan ECY, Eisenthal KB (2001) Effects of bilayer surface charge density on molecular adsorption and transport across liposome bilayers. Biophys J 80(2):1004–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Liu J, Subir M, Nguyen K, Eisenthal KB (2008) Second harmonic studies of ions crossing liposome membranes in real time. J Phys Chem B 112(48):15263–15266. https://doi.org/10.1021/jp806690z

    Article  CAS  PubMed  Google Scholar 

  160. Yang N, Angerer WE, Yodh AG (2001) Angle-resolved second-harmonic light scattering from colloidal particles. Phys Rev Lett 87(10):103902. https://doi.org/10.1103/PhysRevLett.87.103902

    Article  CAS  PubMed  Google Scholar 

  161. Shang XM, Liu Y, Yan E, Eisenthal KB (2001) Effects of counterions on molecular transport across liposome bilayer: probed by second harmonic generation. J Phys Chem B 105(51):12816–12822. https://doi.org/10.1021/jp0120918

    Article  CAS  Google Scholar 

  162. Dadap JI, Shan J, Heinz TF (2004) Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit. J Opt Soc Am B 21(7):1328–1347. https://doi.org/10.1364/josab.21.001328

    Article  CAS  Google Scholar 

  163. Jen SH, Dai HL (2006) Probing molecules adsorbed at the surface of nanometer colloidal particles by optical second-harmonic generation. J Phys Chem B 110(46):23000–23003. https://doi.org/10.1021/jp0644762

    Article  CAS  PubMed  Google Scholar 

  164. Schneider L, Schmid HJ, Peukert W (2007) Influence of particle size and concentration on the second-harmonic signal generated at colloidal surfaces. Appl Phys B 87(2):333–339. https://doi.org/10.1007/s00340-007-2597-7

    Article  CAS  Google Scholar 

  165. Haber LH, Kwok SJJ, Semeraro M, Eisenthal KB (2011) Probing the colloidal gold nanoparticle/aqueous interface with second harmonic generation. Chem Phys Lett 507(1–3):11–14. https://doi.org/10.1016/j.cplett.2011.03.042

    Article  CAS  Google Scholar 

  166. Das A, Chakrabarti A, Das PK (2016) Probing protein adsorption on a nanoparticle surface using second harmonic light scattering. Phys Chem Chem Phys 18(35):24325–24331. https://doi.org/10.1039/c6cp02196d

    Article  CAS  PubMed  Google Scholar 

  167. Roke S, Bonn M, Petukhov AV (2004) Nonlinear optical scattering: the concept of effective susceptibility. Phys Rev B 70(11):115106. https://doi.org/10.1103/PhysRevB.70.115106

    Article  CAS  Google Scholar 

  168. de Beer AGF, Roke S (2010) Obtaining molecular orientation from second harmonic and sum frequency scattering experiments in water: angular distribution and polarization dependence. J Chem Phys 132(23):2347025. https://doi.org/10.1063/1.3429969

    Article  CAS  Google Scholar 

  169. de Aguiar HB, Scheu R, Jena KC, de Beer AGF, Roke S (2012) Comparison of scattering and reflection SFG: a question of phase-matching. Phys Chem Chem Phys 14(19):6826–6832. https://doi.org/10.1039/c2cp40324b

    Article  CAS  PubMed  Google Scholar 

  170. de Beer AGF, Roke S (2009) Nonlinear Mie theory for second-harmonic and sum-frequency scattering. Phys Rev B 79(15):155420. https://doi.org/10.1103/PhysRevB.79.155420

    Article  CAS  Google Scholar 

  171. de Beer AGF, Roke S (2007) Sum frequency generation scattering from the interface of an isotropic particle: geometrical and chiral effects. Phys Rev B 75(24):245438. https://doi.org/10.1103/PhysRevB.75.245438

    Article  CAS  Google Scholar 

  172. de Beer AGF, Roke S, Dadap JI (2011) Theory of optical second-harmonic and sum-frequency scattering from arbitrarily shaped particles. J Opt Soc Am B 28(6):1374–1384

    Article  CAS  Google Scholar 

  173. Vacha R, Rick SW, Jungwirth P, de Beer AGF, de Aguiar HB, Samson JS, Roke S (2011) The orientation and charge of water at the hydrophobic oil droplet-water interface. J Am Chem Soc 133(26):10204–10210. https://doi.org/10.1021/ja202081x

    Article  CAS  PubMed  Google Scholar 

  174. Smolentsev N, Smit WJ, Bakker HJ, Roke S (2017) The interfacial structure of water droplets in a hydrophobic liquid. Nat Commun 8:15548. https://doi.org/10.1038/ncomms15548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Strader ML, de Aguiar HB, de Beer AGF, Roke S (2011) Label-free spectroscopic detection of vesicles in water using vibrational sum frequency scattering. Soft Matter 7(10):4959–4963. https://doi.org/10.1039/c0sm01358g

    Article  CAS  Google Scholar 

  176. Smolentsev N, Lutgebaucks C, Okur HI, de Beer AGF, Roke S (2016) Intermolecular headgroup interaction and hydration as driving forces for lipid transmembrane asymmetry. J Am Chem Soc 138(12):4053–4060. https://doi.org/10.1021/jacs.5b11776

    Article  CAS  PubMed  Google Scholar 

  177. Okur HI, Chen YX, Smolentsev N, Zdrali E, Roke S (2017) Interfacial structure and hydration of 3D lipid monolayers in aqueous solution. J Phys Chem B 121(13):2808–2813. https://doi.org/10.1021/acs.jpcb.7b00609

    Article  CAS  PubMed  Google Scholar 

  178. Johansson PK, Koelsch P (2014) Vibrational sum-frequency scattering for detailed studies of collagen fibers in aqueous environments. J Am Chem Soc 136(39):13598–13601. https://doi.org/10.1021/ja508190d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of NIH grant EB-002027 during the preparation of this manuscript as well as both NIH grant EB-002027 and NSF grant CBET-1125791 for some of the results described in it. We also thank our colleagues for many stimulating discussions about non-linear optical spectroscopy and microscopy over the years, especially Professor Gabor A. Somorjai for his leadership in developing and showing the impact of vibration SFG for obtaining detailed molecular information about surfaces and interfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Castner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johansson, P.K., Schmüser, L. & Castner, D.G. Nonlinear Optical Methods for Characterization of Molecular Structure and Surface Chemistry. Top Catal 61, 1101–1124 (2018). https://doi.org/10.1007/s11244-018-0924-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0924-3

Keywords

Navigation