Advertisement

Topics in Catalysis

, Volume 61, Issue 9–11, pp 1101–1124 | Cite as

Nonlinear Optical Methods for Characterization of Molecular Structure and Surface Chemistry

  • Patrik K. Johansson
  • Lars Schmüser
  • David G. Castner
Original Paper
  • 243 Downloads

Abstract

The principles, strengths and limitations of several nonlinear optical (NLO) methods for characterizing biological systems are reviewed. NLO methods encompass a wide range of approaches that can be used for real-time, in-situ characterization of biological systems, typically in a label-free mode. Multiphoton excitation fluorescence (MPEF) is widely used for high-quality imaging based on electronic transitions, but lacks interface specificity. Second harmonic generation (SHG) is a parametric process that has all the virtues of the two-photon version of MPEF, yielding a signal at twice the frequency of the excitation light, which provides interface specificity. Both SHG and MPEF can provide images with high structural contrast, but they typically lack molecular or chemical specificity. Other NLO methods such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) can provide high-sensitivity imaging with chemical information since Raman active vibrations are probed. However, CARS and SRS lack interface and surface specificity. A NLO method that provides both interface/surface specificity as well as molecular specificity is vibrational sum frequency generation (SFG) spectroscopy. Vibration modes that are both Raman and IR active are probed in the SFG process, providing the molecular specificity. SFG, like SHG, is a parametric process, which provides the interface and surface specificity. SFG is typically done in the reflection mode from planar samples. This has yielded rich and detailed information about the molecular structure of biomaterial interfaces and biomolecules interacting with their surfaces. However, 2-D systems have limitations for understanding the interactions of biomolecules and interfaces in the 3-D biological environment. The recent advances made in instrumentation and analysis methods for sum frequency scattering (SFS) now present the opportunity for SFS to be used to directly study biological solutions. By detecting the scattering at angles away from the phase-matched direction even centrosymmetric structures that are isotropic (e.g., spherical nanoparticles functionalized with self-assembled monolayers or biomolecules) can be probed. Often a combination of multiple NLO methods or a combination of a NLO method with other spectroscopic methods is required to obtain a full understanding of the molecular structure and surface chemistry of biomaterials and the biomolecules that interact with them. Using the right combination methods provides a powerful approach for characterizing biological materials.

Keywords

Nonlinear optics Coherent Raman spectroscopy Sum-frequency generation Structure analysis Surface analysis Biomaterial characterization 

Notes

Acknowledgements

The authors gratefully acknowledge the support of NIH grant EB-002027 during the preparation of this manuscript as well as both NIH grant EB-002027 and NSF grant CBET-1125791 for some of the results described in it. We also thank our colleagues for many stimulating discussions about non-linear optical spectroscopy and microscopy over the years, especially Professor Gabor A. Somorjai for his leadership in developing and showing the impact of vibration SFG for obtaining detailed molecular information about surfaces and interfaces.

References

  1. 1.
    Hunt JH, Guyotsionnest P, Shen YR (1987) Observation of C-H stretch vibrations of monolayers of molecules optical sum-frequency generation. Chem Phys Lett 133(3):189–192.  https://doi.org/10.1016/0009-2614(87)87049-5 CrossRefGoogle Scholar
  2. 2.
    Guyotsionnest P, Hunt JH, Shen YR (1987) Sum-frequency vibrational spectroscopy of a Langmuir film—study of molecular-orientation of a two-dimensional system. Phys Rev Lett 59(14):1597–1600.  https://doi.org/10.1103/PhysRevLett.59.1597 CrossRefGoogle Scholar
  3. 3.
    Zhu XD, Suhr H, Shen YR (1987) Surface vibrational spectroscopy by infrared-visible sum frequency generation. Phys Rev B 35(6):3047–3050.  https://doi.org/10.1103/PhysRevB.35.3047 CrossRefGoogle Scholar
  4. 4.
    Bain CD, Davies PB, Ong TH, Ward RN, Brown MA (1991) Quantitative-analysis of monolayer composition by sum-frequency vibrational spectroscopy. Langmuir 7(8):1563–1566.  https://doi.org/10.1021/la00056a003 CrossRefGoogle Scholar
  5. 5.
    Superfine R, Guyotsionnest P, Hunt JH, Kao CT, Shen YR (1988) Surface vibrational spectroscopy of molecular adsorbates on metals and semiconductors by infrared visible sum-frequency generation. Surf Sci 200(1):L445–L450.  https://doi.org/10.1016/0039-6028(88)90422-0 CrossRefGoogle Scholar
  6. 6.
    Woodbury EJ, Ng WK (1962) Ruby laser operation in the near IR. Proc IRE 50:2347–2348CrossRefGoogle Scholar
  7. 7.
    Yakovlev VV, Petrov GI, Zhang HF, Noojin GD, Denton ML, Thomas RJ, Scully MO (2009) Stimulated Raman scattering: old physics, new applications. J Mod Opt 56(18–19):1970–1973.  https://doi.org/10.1080/09500340903082671 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He CW, Tsai JC, Kang JX, Xie XS (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322(5909):1857–1861.  https://doi.org/10.1126/science.1165758 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cheng JX, Xie XS (2015) Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350(6264):10.  https://doi.org/10.1126/science.aaa8870 CrossRefGoogle Scholar
  10. 10.
    Chen WL, Hu PS, Ghazaryan A, Chen SJ, Tsai TH, Dong CY (2012) Quantitative analysis of multiphoton excitation autofluorescence and second harmonic generation imaging for medical diagnosis. Comput Med Imaging Graph 36(7):519–526.  https://doi.org/10.1016/j.compmedimag.2012.06.003 CrossRefPubMedGoogle Scholar
  11. 11.
    Yue SH, Slipchenko MN, Cheng JX (2011) Multimodal nonlinear optical microscopy. Laser Photonics Rev 5(4):496–512.  https://doi.org/10.1002/lpor.201000027 CrossRefGoogle Scholar
  12. 12.
    Pezacki JP, Blake JA, Danielson DC, Kennedy DC, Lyn RK, Singaravelu R (2011) Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat Chem Biol 7(3):137–145.  https://doi.org/10.1038/nchembio.525 CrossRefPubMedGoogle Scholar
  13. 13.
    Roy S, Covert PA, FitzGerald WR, Hore DK (2014) Biomolecular structure at solid-liquid interfaces as revealed by nonlinear optical spectroscopy. Chem Rev 114(17):8388–8415.  https://doi.org/10.1021/cr400418b CrossRefPubMedGoogle Scholar
  14. 14.
    Yan ECY, Fu L, Wang ZG, Liu W (2014) Biological macromolecules at interfaces probed by chiral vibrational sum frequency generation spectroscopy. Chem Rev 114(17):8471–8498.  https://doi.org/10.1021/cr4006044 CrossRefPubMedGoogle Scholar
  15. 15.
    Ding B, Jasensky J, Li YX, Chen Z (2016) Engineering and characterization of peptides and proteins at surfaces and interfaces: a case study in surface-sensitive vibrational spectroscopy. Acc Chem Res 49(6):1149–1157.  https://doi.org/10.1021/acs.accounts.6b00091 CrossRefPubMedGoogle Scholar
  16. 16.
    Muiznieks LD, Keeley FW (2013) Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochimica Et Biophysica Acta-Mol Basis Dis 1832(7):866–875.  https://doi.org/10.1016/j.bbadis.2012.11.022 CrossRefGoogle Scholar
  17. 17.
    Cooper GM, Hausman RE (2015) The cell: a molecular approach, 7 edn. Sinauer Associates, SunderlandGoogle Scholar
  18. 18.
    Burridge K, Fath K, Kelly T, Nuckolls G, Turner C (1988) Focal adhesions—transmembrane junctions between the extracellular-matrix and the cytoskeleton. Annu Rev Cell Biol 4:487–525.  https://doi.org/10.1146/annurev.cb.04.110188.002415 CrossRefPubMedGoogle Scholar
  19. 19.
    Murugan R, Ramakrishna S (2007) Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng 13(8):1845–1866.  https://doi.org/10.1089/ten.2006.0078 CrossRefPubMedGoogle Scholar
  20. 20.
    Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143.  https://doi.org/10.1126/science.1116995 CrossRefPubMedGoogle Scholar
  21. 21.
    Hardy J, Selkoe DJ (2002) Medicine—the amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356.  https://doi.org/10.1126/science.1072994 CrossRefPubMedGoogle Scholar
  22. 22.
    Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148(6):1188–1203.  https://doi.org/10.1016/j.cell.2012.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Selkoe DJ, Schenk D (2003) Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584.  https://doi.org/10.1146/annurev.pharmtox.43.100901.140248 CrossRefPubMedGoogle Scholar
  24. 24.
    Thanh NTK, Green LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5(3):213–230.  https://doi.org/10.1016/j.nantod.2010.05.003 CrossRefGoogle Scholar
  25. 25.
    Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160.  https://doi.org/10.1038/nrd1632 CrossRefPubMedGoogle Scholar
  26. 26.
    Castner DG (2017) Biomedical surface analysis: evolution and future directions. Biointerphases 12(2):11.  https://doi.org/10.1116/1.4982169 CrossRefGoogle Scholar
  27. 27.
    Apte JS, Collier G, Latour RA, Gamble LJ, Castner DG (2010) XPS and ToF-SIMS Investigation of alpha-helical and beta-strand peptide adsorption onto SAMs. Langmuir 26(5):3423–3432.  https://doi.org/10.1021/la902888y CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Belu AM, Graham DJ, Castner DG (2003) Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials 24(21):3635–3653.  https://doi.org/10.1016/s0142-9612(03)00159-5 CrossRefPubMedGoogle Scholar
  29. 29.
    Rodahl M, Hook F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, Voinova M, Kasemo B (1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107:229–246.  https://doi.org/10.1039/a703137h CrossRefGoogle Scholar
  30. 30.
    Reimhult E, Hook F, Kasemo B (2003) Intact vesicle adsorption and supported biomembrane formation from vesicles in solution: Influence of surface chemistry, vesicle size, temperature, and osmotic pressure. Langmuir 19(5):1681–1691.  https://doi.org/10.1021/la0263920 CrossRefGoogle Scholar
  31. 31.
    Keller CA, Kasemo B (1998) Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J 75(3):1397–1402CrossRefGoogle Scholar
  32. 32.
    Liedberg B, Nylander C, Lundstrom I (1983) Surface-plasmon resonance for gas-detection and biosensing. Sens Actuators 4(2):299–304.  https://doi.org/10.1016/0250-6874(83)85036-7 CrossRefGoogle Scholar
  33. 33.
    Besenicar M, Macek P, Lakey JH, Anderluh G (2006) Surface plasmon resonance in protein-membrane interactions. Chem Phys Lipid 141(1–2):169–178.  https://doi.org/10.1016/j.chemphyslip.2006.02.010 CrossRefGoogle Scholar
  34. 34.
    Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35(4):369–430.  https://doi.org/10.1017/s0033583502003815 CrossRefPubMedGoogle Scholar
  35. 35.
    Shen YR (2002) The principles of nonlinear optics. Wiley, New YorkGoogle Scholar
  36. 36.
    Boyd RW (2008) Nonlinear optics, 3 edn. Academic Press, OxfordGoogle Scholar
  37. 37.
    Shen YR (1994) Surfaces probed by nonlinear optics. Surf Sci 299(1–3):551–562.  https://doi.org/10.1016/0039-6028(94)90681-5 CrossRefGoogle Scholar
  38. 38.
    Yakovlev VV (2009) Biochemical applications of nonlinear optical spectroscopy optical science and engineering. CRC Press, Boca RatonCrossRefGoogle Scholar
  39. 39.
    Simpson GJ (2017) Nonlinear optical polarization analysis in chemistry and biology. Cambridge molecular science. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  40. 40.
    Risselada HJ, Marrink SJ (2009) Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. Phys Chem Chem Phys 11(12):2056–2067.  https://doi.org/10.1039/b818782g CrossRefPubMedGoogle Scholar
  41. 41.
    Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20(16):6800–6807.  https://doi.org/10.1021/la0497200 CrossRefPubMedGoogle Scholar
  42. 42.
    Grainger DW, Castner DG (2008) Nanobiomaterials and nanoanalysis: opportunities for improving the science to benefit biomedical technologies. Adv Mater 20(5):867–877.  https://doi.org/10.1002/adma.200701760 CrossRefGoogle Scholar
  43. 43.
    Eisenthal KB (2006) Second harmonic spectroscopy of aqueous nano- and microparticle interfaces. Chem Rev 106(4):1462–1477.  https://doi.org/10.1021/cr0403685 CrossRefPubMedGoogle Scholar
  44. 44.
    Roke S, Gonella G (2012) Nonlinear light scattering and spectroscopy of particles and droplets in liquids. In: Johnson MA, Martinez TJ (eds) Annu Rev Phys Chem 63:353–378.  https://doi.org/10.1146/annurev-physchem-032511-143748 CrossRefPubMedGoogle Scholar
  45. 45.
    Wang H, Yan ECY, Borguet E, Eisenthal KB (1996) Second harmonic generation from the surface of centrosymmetric particles in bulk solution. Chem Phys Lett 259(1–2):15–20.  https://doi.org/10.1016/0009-2614(96)00707-5 CrossRefGoogle Scholar
  46. 46.
    Roke S, Roeterdink WG, Wijnhoven J, Petukhov AV, Kleyn AW, Bonn M (2003) Vibrational sum frequency scattering from a submicron suspension. Phys Rev Lett 91(25):258302.  https://doi.org/10.1103/PhysRevLett.91.258302 CrossRefPubMedGoogle Scholar
  47. 47.
    Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11):1368–1376.  https://doi.org/10.1038/nbt899 CrossRefGoogle Scholar
  48. 48.
    Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100(12):7075–7080.  https://doi.org/10.1073/pnas.0832308100 CrossRefPubMedGoogle Scholar
  49. 49.
    Liu HW, Liu YC, Wang P, Zhang XB (2017) Molecular engineering of two-photon fluorescent probes for bioimaging applications. Methods Appl Fluoresc 5(1):24.  https://doi.org/10.1088/2050-6120/aa61b0 CrossRefGoogle Scholar
  50. 50.
    Kwan AC, Duff K, Gouras GK, Webb WW (2009) Optical visualization of Alzheimer’s pathology via multiphoton-excited intrinsic fluorescence and second harmonic generation. Opt Express 17(5):3679–3689.  https://doi.org/10.1364/oe.17.003679 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Johansson PK, Koelsch P (2017) Label-free imaging of amyloids using their intrinsic linear and nonlinear optical properties. Biomed Opt Express 8(2):743–756.  https://doi.org/10.1364/boe.8.000743 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lee JH, Kim DH, Song WK, Oh MK, Ko DK (2015) Label-free imaging and quantitative chemical analysis of Alzheimer’s disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy. J Biomed Opt 20(5):7.  https://doi.org/10.1117/1.jbo.20.5.056013 CrossRefGoogle Scholar
  53. 53.
    Zoumi A, Yeh A, Tromberg BJ (2002) Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99(17):11014–11019.  https://doi.org/10.1073/pnas.172368799 CrossRefPubMedGoogle Scholar
  54. 54.
    Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243(3):221–226.  https://doi.org/10.1111/j.1365-2818.2011.03532.x CrossRefPubMedGoogle Scholar
  55. 55.
    Gauderon R, Lukins PB, Sheppard CJR (2001) Optimization of second-harmonic generation microscopy. Micron 32(7):691–700.  https://doi.org/10.1016/s0968-4328(00)00066-4 CrossRefPubMedGoogle Scholar
  56. 56.
    Moad AJ, Simpson GJ (2004) A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies. J Phys Chem B 108(11):3548–3562.  https://doi.org/10.1021/jp035362i CrossRefGoogle Scholar
  57. 57.
    Chen WL, Li TH, Su PJ, Chou CK, Fwu PT, Lin SJ, Kim D, So PTC, Dong CY (2009) Second harmonic generation chi tensor microscopy for tissue imaging. Appl Phys Lett 94(18):3.  https://doi.org/10.1063/1.3132062 CrossRefGoogle Scholar
  58. 58.
    Chen XY, Nadiarynkh O, Plotnikov S, Campagnola PJ (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7(4):654–669.  https://doi.org/10.1038/nprot.2012.009 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Pavone FS, Campagnola PJ (2014) Second harmonic generation imaging. Series in cellular and clinical imaging. CRC Press, Boca RatonGoogle Scholar
  60. 60.
    Williams RM, Zipfel WR, Webb WW (2005) Interpreting second-harmonic generation images of collagen I fibrils. Biophys J 88(2):1377–1386.  https://doi.org/10.1529/biophysj.104.047308 CrossRefPubMedGoogle Scholar
  61. 61.
    Stoller P, Kim BM, Rubenchik AM, Reiser KM, Da Silva LB (2002) Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. J Biomed Opt 7(2):205–214.  https://doi.org/10.1117/1.1431967 CrossRefPubMedGoogle Scholar
  62. 62.
    Tuer AE, Krouglov S, Prent N, Cisek R, Sandkuijl D, Yasufuku K, Wilson BC, Barzda V (2011) Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy. J Phys Chem B 115(44):12759–12769.  https://doi.org/10.1021/jp206308k CrossRefPubMedGoogle Scholar
  63. 63.
    Jiang XS, Zhong JZ, Liu YC, Yu HB, Zhuo SM, Chen JX (2011) Two-photon fluorescence and second-harmonic generation imaging of collagen in human tissue based on multiphoton microscopy. Scanning 33(1):53–56.  https://doi.org/10.1002/sca.20219 CrossRefPubMedGoogle Scholar
  64. 64.
    Kumar R, Gronhaug KM, Romijn EI, Finnoy A, Davies CL, Drogset JO, Lilledahl MB (2015) Polarization second harmonic generation microscopy provides quantitative enhanced molecular specificity for tissue diagnostics. J Biophotonics 8(9):730–739.  https://doi.org/10.1002/jbio.201400086 CrossRefPubMedGoogle Scholar
  65. 65.
    Ditcham WGF, Al-Obaidi AHR, McStay D, Mottram TT, Brownlie J, Thompson I (2001) An immunosensor with potential for the detection of viral antigens in body fluids, based on surface second harmonic generation. Biosens Bioelectron 16(3):221–224.  https://doi.org/10.1016/s0956-5663(00)00134-2 CrossRefPubMedGoogle Scholar
  66. 66.
    Sly KL, Conboy JC (2014) Determination of multivalent protein-ligand binding kinetics by second-harmonic correlation spectroscopy. Anal Chem 86(22):11045–11054.  https://doi.org/10.1021/ac500094v CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Nuriya M, Fukushima S, Momotake A, Shinotsuka T, Yasui M, Arai T (2016) Multimodal two-photon imaging using a second harmonic generation-specific dye. Nat Commun 7:10.  https://doi.org/10.1038/ncomms11557 CrossRefGoogle Scholar
  68. 68.
    Reeve JE, Anderson HL, Clays K (2010) Dyes for biological second harmonic generation imaging. Phys Chem Chem Phys 12(41):13484–13498.  https://doi.org/10.1039/c003720f CrossRefPubMedGoogle Scholar
  69. 69.
    Cheng JX, Xie XS (2004) Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J Phys Chem B 108(3):827–840.  https://doi.org/10.1021/jp035693v CrossRefGoogle Scholar
  70. 70.
    Rodriguez LG, Lockett SJ, Holtom GR (2006) Coherent anti-Stokes Raman scattering microscopy: a biological review. Cytometry A 69A(8):779–791.  https://doi.org/10.1002/cyto.a.20299 CrossRefGoogle Scholar
  71. 71.
    Evans CL, Xie XS (2008) Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem 1:883–909  https://doi.org/10.1146/annurev.anchem.1.031207.112754 CrossRefGoogle Scholar
  72. 72.
    Volkmer A (2005) Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy. J Phys D 38(5):R59–R81.  https://doi.org/10.1088/0022-3727/38/5/r01 CrossRefGoogle Scholar
  73. 73.
    Liu YX, Lee YJ, Cicerone MT (2009) Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform. Opt Lett 34(9):1363–1365CrossRefGoogle Scholar
  74. 74.
    Camp CH, Lee YJ, Heddleston JM, Hartshorn CM, Walker ARH, Rich JN, Lathia JD, Cicerone MT (2014) High-speed coherent Raman fingerprint imaging of biological tissues. Nat Photonics 8(8):627–634.  https://doi.org/10.1038/nphoton.2014.145 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Fu Y, Huff TB, Wang HW, Wang HF, Cheng JX (2008) Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy. Opt Express 16(24):19396–19409.  https://doi.org/10.1364/oe.16.019396 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kiskis J, Fink H, Nyberg L, Thyr J, Li JY, Enejder A (2015) Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy. Sci Rep 5:13489.  https://doi.org/10.1038/srep13489 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Tipping WJ, Lee M, Serrels A, Brunton VG, Hulme AN (2016) Stimulated Raman scattering microscopy: an emerging tool for drug discovery. Chem Soc Rev 45(8):2075–2089.  https://doi.org/10.1039/c5cs00693g CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Min W, Freudiger CW, Lu SJ, Xie XS (2011) Coherent nonlinear optical imaging: beyond fluorescence microscopy. In: Leone SR, Cremer PS, Groves JT, Johnson MA (eds) Annu Rev Phys Chem 62:507–530.  https://doi.org/10.1146/annurev.physchem.012809.103512 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Duboisset J, Berto P, Gasecka P, Bioud FZ, Ferrand P, Rigneault H, Brasselet S (2015) Molecular orientational order probed by coherent anti-Stokes raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy: a spectral comparative study. J Phys Chem B 119(7):3242–3249.  https://doi.org/10.1021/jp5113813 CrossRefPubMedGoogle Scholar
  80. 80.
    Hofer M, Balla NK, Brasselet S (2017) High-speed polarization-resolved coherent Raman scattering imaging. Optica 4(7):795–801.  https://doi.org/10.1364/optica.4.000795 CrossRefGoogle Scholar
  81. 81.
    Davis RP, Moad AJ, Goeken GS, Wampler RD, Simpson GJ (2008) Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies. J Phys Chem B 112(18):5834–5848.  https://doi.org/10.1021/jp709961k CrossRefPubMedGoogle Scholar
  82. 82.
    Zimmerley M, Mahou P, Debarre D, Schanne-Klein MC, Beaurepaire E (2013) Probing ordered lipid assemblies with polarized third-harmonic-generation microscopy. Phys Rev X 3(1):16.  https://doi.org/10.1103/PhysRevX.3.011002 CrossRefGoogle Scholar
  83. 83.
    Bioud FZ, Gasecka P, Ferrand P, Rigneault H, Duboisset J, Brasselet S (2014) Structure of molecular packing probed by polarization-resolved nonlinear four-wave mixing and coherent anti-Stokes Raman-scattering microscopy. Phys Rev A 89(1):10.  https://doi.org/10.1103/PhysRevA.89.013836 CrossRefGoogle Scholar
  84. 84.
    Bonn M, Muller M, Rinia HA, Burger KNJ (2009) Imaging of chemical and physical state of individual cellular lipid droplets using multiplex CARS microscopy. J Raman Spectrosc 40(7):763–769.  https://doi.org/10.1002/jrs.2253 CrossRefGoogle Scholar
  85. 85.
    Fu D, Lu FK, Zhang X, Freudiger C, Pernik DR, Holtom G, Xie XS (2012) Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J Am Chem Soc 134(8):3623–3626.  https://doi.org/10.1021/ja210081h CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Fu D, Holtom G, Freudiger C, Zhang X, Xie XS (2013) Hyperspectral Imaging with stimulated Raman scattering by chirped femtosecond lasers. J Phys Chem B 117(16):4634–4640.  https://doi.org/10.1021/jp308938t CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Vidal F, Tadjeddine A (2005) Sum-frequency generation spectroscopy of interfaces. Rep Prog Phys 68(5):1095–1127.  https://doi.org/10.1088/0034-4885/68/5/r03 CrossRefGoogle Scholar
  88. 88.
    Wang HF, Velarde L, Gan W, Fu L (2015) Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation. In: Johnson MA, Martinez TJ (eds) Annu Rev Phys Chem 66:189–216.  https://doi.org/10.1146/annurev-physchem-040214-121322 CrossRefPubMedGoogle Scholar
  89. 89.
    Foster RN, Johansson PK, Tom NR, Koelsch P, Castner DG (2015) Experimental design and analysis of activators regenerated by electron transfer-atom transfer radical polymerization experimental conditions for grafting sodium styrene sulfonate from titanium substrates. J Vac Sci Technol A 33(5):11.  https://doi.org/10.1116/1.4929506 CrossRefGoogle Scholar
  90. 90.
    Song S, Koelsch P, Weidner T, Castner DG (2013) Sodium dodecyl sulfate adsorption onto positively charged surfaces: monolayer formation with opposing headgroup orientations. Langmuir 29:12710–12719CrossRefGoogle Scholar
  91. 91.
    Haupert LM, Simpson GJ (2009) Chirality in nonlinear optics. Annu Rev Phys Chem 60:345–365.  https://doi.org/10.1146/annurev.physchem.59.032607.093712 CrossRefPubMedGoogle Scholar
  92. 92.
    Fu L, Wang ZG, Yan ECY (2011) Chiral vibrational structures of proteins at interfaces probed by sum frequency generation spectroscopy. Int J Mol Sci 12(12):9404–9425.  https://doi.org/10.3390/ijms12129404 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Wang J, Chen XY, Clarke ML, Chen Z (2005) Detection of chiral sum frequency generation vibrational spectra of proteins and peptides at interfaces in situ. Proc Natl Acad Sci USA 102(14):4978–4983.  https://doi.org/10.1073/pnas.0501206102 CrossRefPubMedGoogle Scholar
  94. 94.
    Yan ECY, Wang ZG, Fu L (2015) Proteins at interfaces probed by chiral vibrational sum frequency generation spectroscopy. J Phys Chem B 119(7):2769–2785.  https://doi.org/10.1021/jp508926e CrossRefPubMedGoogle Scholar
  95. 95.
    Fu L, Liu J, Yan ECY (2011) Chiral sum frequency generation spectroscopy for characterizing protein secondary structures at interfaces. J Am Chem Soc 133(21):8094–8097.  https://doi.org/10.1021/ja201575e CrossRefPubMedGoogle Scholar
  96. 96.
    Roeters SJ, van Dijk CN, Torres-Knoop A, Backus EHG, Campen RK, Bonn M, Woutersen S (2013) Determining in situ protein conformation and orientation from the amide-I sum-frequency generation spectrum: theory and experiment. J Phys Chem A 117(29):6311–6322.  https://doi.org/10.1021/jp401159r CrossRefPubMedGoogle Scholar
  97. 97.
    Nguyen KT, King JT, Chen Z (2010) Orientation determination of interfacial beta-sheet structures in situ. J Phys Chem B 114(25):8291–8300.  https://doi.org/10.1021/jp102343h CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Nguyen KT, Le Clair SV, Ye SJ, Chen Z (2009) Orientation determination of protein helical secondary structures using linear and nonlinear vibrational spectroscopy. J Phys Chem B 113(36):12169–12180.  https://doi.org/10.1021/jp904153z CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Harrison ET, Weidner T, Castner DG, Interlandi G (2017) Predicting the orientation of protein G B1 on hydrophobic surfaces using Monte Carlo simulations. Biointerphases 12(2):02D401.  https://doi.org/10.1116/1.4971381 CrossRefGoogle Scholar
  100. 100.
    Kim J, Chou KC, Somorjai GA (2003) Structure and dynamics of acetonitrile at the air/liquid interface of binary solutions studied by infrared-visible sum frequency generation. J Phys Chem B 107(7):1592–1596.  https://doi.org/10.1021/jp021227e CrossRefGoogle Scholar
  101. 101.
    Kim J, Somorjai GA (2003) Molecular packing of lysozyme, fibrinogen, and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared-visible sum frequency generation and fluorescence microscopy. J Am Chem Soc 125(10):3150–3158.  https://doi.org/10.1021/ja028987n CrossRefPubMedGoogle Scholar
  102. 102.
    Wang J, Paszti Z, Even MA, Chen Z (2002) Measuring polymer surface ordering differences in air and water by sum frequency generation vibrational spectroscopy. J Am Chem Soc 124(24):7016–7023.  https://doi.org/10.1021/ja012387r CrossRefPubMedGoogle Scholar
  103. 103.
    Wang J, Chen CY, Buck SM, Chen Z (2001) Molecular chemical structure on poly(methyl methacrylate) (PMMA) surface studied by sum frequency generation (SFG) vibrational spectroscopy. J Phys Chem B 105(48):12118–12125.  https://doi.org/10.1021/jp013161d CrossRefGoogle Scholar
  104. 104.
    Zhuang X, Miranda PB, Kim D, Shen YR (1999) Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys Rev B 59(19):12632–12640.  https://doi.org/10.1103/PhysRevB.59.12632 CrossRefGoogle Scholar
  105. 105.
    Weidner T, Breen NF, Li K, Drobny GP, Castner DG (2010) Sum frequency generation and solid-state NMR study of the structure, orientation, and dynamics of polystyrene-adsorbed peptides. Proc Natl Acad Sci USA 107(30):13288–13293.  https://doi.org/10.1073/pnas.1003832107 CrossRefPubMedGoogle Scholar
  106. 106.
    Liu YW, Ogorzalek TL, Yang P, Schroeder MM, Marsh ENG, Chen Z (2013) Molecular orientation of enzymes attached to surfaces through defined chemical linkages at the solid-liquid interface. J Am Chem Soc 135(34):12660–12669.  https://doi.org/10.1021/ja403672s CrossRefPubMedGoogle Scholar
  107. 107.
    Badieyan S, Wang QM, Zou XQ, Li YX, Herron M, Abbott NL, Chen Z, Marsh ENG (2017) Engineered surface-immobilized enzyme that retains high levels of catalytic activity in air. J Am Chem Soc 139(8):2872–2875.  https://doi.org/10.1021/jacs.6b12174 CrossRefPubMedGoogle Scholar
  108. 108.
    Shen L, Cheng KCK, Schroeder M, Yang P, Marsh ENG, Lahann J, Chen Z (2016) Immobilization of enzyme on a polymer surface. Surf Sci 648:53–59.  https://doi.org/10.1016/j.susc.2015.10.046 CrossRefGoogle Scholar
  109. 109.
    Shen L, Ulrich NW, Mello CM, Chen Z (2015) Determination of conformation and orientation of immobilized peptides and proteins at buried interfaces. Chem Phys Lett 619:247–255.  https://doi.org/10.1016/j.cplett.2014.10.035 CrossRefGoogle Scholar
  110. 110.
    Weidner T, Castner DG (2013) SFG analysis of surface bound proteins: a route towards structure determination. Phys Chem Chem Phys 15(30):12516–12524.  https://doi.org/10.1039/c3cp50880c CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Baugh L, Weidner T, Baio JE, Nguyen PCT, Gamble LJ, Slayton PS, Castner DG (2010) Probing the orientation of surface-immobilized protein G B1 using ToF-SIMS, sum frequency generation, and NEXAFS spectroscopy. Langmuir 26(21):16434–16441.  https://doi.org/10.1021/la1007389 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Hennig R, Heidrich J, Saur M, Schmuser L, Roeters SJ, Hellmann N, Woutersen S, Bonn M, Weidner T, Markl J, Schneider D (2015) IM30 triggers membrane fusion in cyanobacteria and chloroplasts. Nat Commun 6:7018.  https://doi.org/10.1038/ncomms8018 CrossRefPubMedGoogle Scholar
  113. 113.
    Covert PA, Hore DK (2015) Assessing the gold standard: the complex vibrational nonlinear susceptibility of metals. J Phys Chem C 119(1):271–276.  https://doi.org/10.1021/jp508286q CrossRefGoogle Scholar
  114. 114.
    Jena KC, Covert PA, Hall SA, Hore DK (2011) Absolute orientation of ester side chains on the PMMA surface. J Phys Chem C 115(31):15570–15574.  https://doi.org/10.1021/jp205712c CrossRefGoogle Scholar
  115. 115.
    Nihonyanagi S, Yamaguchi S, Tahara T (2009) Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. J Chem Phys 130(20):5.  https://doi.org/10.1063/1.3135147 CrossRefGoogle Scholar
  116. 116.
    Mondal JA, Nihonyanagi S, Yamaguchi S, Tahara T (2010) Structure and orientation of water at charged lipid monolayer/water interfaces probed by heterodyne-detected vibrational sum frequency generation spectroscopy. J Am Chem Soc 132(31):10656–10657.  https://doi.org/10.1021/ja104327t CrossRefPubMedGoogle Scholar
  117. 117.
    Stiopkin IV, Jayathilake HD, Bordenyuk AN, Benderskii AV (2008) Heterodyne-detected vibrational sum frequency generation spectroscopy. J Am Chem Soc 130(7):2271–2275.  https://doi.org/10.1021/ja076708w CrossRefPubMedGoogle Scholar
  118. 118.
    Stiopkin IV, Weeraman C, Pieniazek PA, Shalhout FY, Skinner JL, Benderskii AV (2011) Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474(7350):192–195.  https://doi.org/10.1038/nature10173 CrossRefPubMedGoogle Scholar
  119. 119.
    Superfine R, Huang JY, Shen YR (1990) Phase measurement for surface infrared visible sum-frequency generation. Opt Lett 15(22):1276–1278.  https://doi.org/10.1364/ol.15.001276 CrossRefPubMedGoogle Scholar
  120. 120.
    Ji N, Ostroverkhov V, Chen CY, Shen YR (2007) Phase-sensitive sum-frequency vibrational spectroscopy and its application to studies of interfacial alkyl chains. J Am Chem Soc 129(33):10056–10057.  https://doi.org/10.1021/ja071989t CrossRefPubMedGoogle Scholar
  121. 121.
    Schmuser L, Roeters S, Lutz H, Woutersen S, Bonn M, Weidner T (2017) Determination of absolute orientation of protein alpha-helices at interfaces using phase-resolved sum frequency generation spectroscopy. J Phys Chem Lett 8(13):3101–3105.  https://doi.org/10.1021/acs.jpclett.7b01059 CrossRefPubMedGoogle Scholar
  122. 122.
    Du Q, Superfine R, Freysz E, Shen YR (1993) Vibrational spectroscopy of water at the vapor water interface. Phys Rev Lett 70(15):2313–2316.  https://doi.org/10.1103/PhysRevLett.70.2313 CrossRefPubMedGoogle Scholar
  123. 123.
    Sanchez MA, Kling T, Ishiyama T, van Zadel MJ, Bisson PJ, Mezger M, Jochum MN, Cyran JD, Smit WJ, Bakker HJ, Shultz MJ, Morita A, Donadio D, Nagata Y, Bonn M, Backus EHG (2017) Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice. Proc Natl Acad Sci USA 114(2):227–232.  https://doi.org/10.1073/pnas.1612893114 CrossRefPubMedGoogle Scholar
  124. 124.
    Wang J, Buck SM, Chen Z (2002) Sum frequency generation vibrational spectroscopy studies on protein adsorption. J Phys Chem B 106(44):11666–11672.  https://doi.org/10.1021/jp021363j CrossRefGoogle Scholar
  125. 125.
    Wang J, Even MA, Chen XY, Schmaier AH, Waite JH, Chen Z (2003) Detection of amide I signals of interfacial proteins in situ using SFG. J Am Chem Soc 125(33):9914–9915.  https://doi.org/10.1021/ja036373s CrossRefPubMedGoogle Scholar
  126. 126.
    Chen XY, Wang J, Sniadecki JJ, Even MA, Chen Z (2005) Probing alpha-helical and beta-sheet structures of peptides at solid/liquid interfaces with SFG. Langmuir 21(7):2662–2664.  https://doi.org/10.1021/la050048w CrossRefPubMedGoogle Scholar
  127. 127.
    Wang J, Clarke ML, Chen XY, Even MA, Johnson WC, Chen Z (2005) Molecular studies on protein conformations at polymer/liquid interfaces using sum frequency generation vibrational spectroscopy. Surf Sci 587(1–2):1–11.  https://doi.org/10.1016/j.susc.2005.04.034 CrossRefGoogle Scholar
  128. 128.
    Chen XY, Wang J, Boughton AP, Kristalyn CB, Chen Z (2007) Multiple orientation of melittin inside a single lipid bilayer determined by combined vibrational spectroscopic studies. J Am Chem Soc 129(5):1420–1427.  https://doi.org/10.1021/ja067446I CrossRefPubMedGoogle Scholar
  129. 129.
    Le Clair SV, Nguyen K, Chen Z (2009) Sum frequency generation studies on bioadhesion: elucidating the molecular structure of proteins at interfaces. J Adhes 85(8):484–511.  https://doi.org/10.1080/00218460902996374 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Nguyen KT, Soong R, Im SC, Waskell L, Ramamoorthy A, Chen Z (2010) Probing the spontaneous membrane insertion of a tail-anchored membrane protein by sum frequency generation spectroscopy. J Am Chem Soc 132(43):15112–15115.  https://doi.org/10.1021/ja106508f CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Ye SJ, Nguyen KT, Boughton AP, Mello CM, Chen Z (2010) Orientation difference of chemically immobilized and physically adsorbed biological molecules on polymers detected at the solid/liquid interfaces in situ. Langmuir 26(9):6471–6477.  https://doi.org/10.1021/la903932w CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Liu YW, Jasensky J, Chen Z (2012) Molecular interactions of proteins and peptides at interfaces studied by sum frequency generation vibrational spectroscopy. Langmuir 28(4):2113–2121.  https://doi.org/10.1021/la203823t CrossRefPubMedGoogle Scholar
  133. 133.
    Weidner T, Dubey M, Breen NF, Ash J, Baio JE, Jaye C, Fischer DA, Drobny GP, Castner DG (2012) Direct observation of phenylalanine orientations in statherin bound to hydroxyapatite surfaces. J Am Chem Soc 134(21):8750–8753.  https://doi.org/10.1021/ja301711w CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Fu L, Wang ZG, Psciuk BT, Xiao DQ, Batista VS, Yan ECY (2015) Characterization of parallel beta-sheets at interfaces by chiral sum frequency generation spectroscopy. J Phys Chem Lett 6(8):1310–1315.  https://doi.org/10.1021/acs.jpclett.5b00326 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    vandenAkker CC, Engel MFM, Velikov KP, Bonn M, Koenderink GH (2011) Morphology and persistence length of amyloid fibrils are correlated to peptide molecular structure. J Am Chem Soc 133(45):18030–18033.  https://doi.org/10.1021/ja206513r CrossRefPubMedGoogle Scholar
  136. 136.
    Fu L, Wang ZG, Batista VS, Yan ECY (2016) New insights from sum frequency generation vibrational spectroscopy into the interactions of islet amyloid polypeptides with lipid membranes. J Diabetes Res.  https://doi.org/10.1155/2016/7293063 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Liu J, Conboy JC (2004) Phase transition of a single lipid bilayer measured by sum-frequency vibrational spectroscopy. J Am Chem Soc 126(29):8894–8895.  https://doi.org/10.1021/ja031570c CrossRefPubMedGoogle Scholar
  138. 138.
    Liu J, Conboy JC (2005) 1,2-Diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy. Biophys J 89(4):2522–2532.  https://doi.org/10.1529/biophysj.105.065672 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Brown KL, Conboy JC (2013) Lipid flip-flop in binary membranes composed of phosphatidylserine and phosphatidylcholine. J Phys Chem B 117(48):15041–15050.  https://doi.org/10.1021/jp409672q CrossRefPubMedGoogle Scholar
  140. 140.
    Weeraman C, Yatawara AK, Bordenyuk AN, Benderskii AV (2006) Effect of nanoscale geometry on molecular conformation: vibrational sum-frequency generation of alkanethiols on gold nanoparticles. J Am Chem Soc 128(44):14244–14245.  https://doi.org/10.1021/ja065756y CrossRefPubMedGoogle Scholar
  141. 141.
    Zorn G, Dave SR, Weidner T, Gao X, Castner DG (2016) Direct characterization of polymer encapsulated CdSe/CdS/ZnS quantum dots. Surf Sci 648:339–344CrossRefGoogle Scholar
  142. 142.
    Howell C, Hamoudi H, Heissler S, Koelsch P, Zharnikov M (2011) Orientation changes in surface-bound hybridized DNA undergoing preparation for ex situ spectroscopic measurements. Chem Phys Lett 513(4–6):267–270.  https://doi.org/10.1016/j.cplett.2011.07.096 CrossRefGoogle Scholar
  143. 143.
    Howell C, Schmidt R, Kurz V, Koelsch P (2008) Sum-frequency-generation spectroscopy of DNA films in air and aqueous environments. Biointerphases 3(3):FC47–FC51.  https://doi.org/10.1116/1.3064107 CrossRefGoogle Scholar
  144. 144.
    Howell C, Zhao JL, Koelsch P, Zharnikov M (2011) Hybridization in ssDNA films-a multi-technique spectroscopy study. Phys Chem Chem Phys 13(34):15512–15522.  https://doi.org/10.1039/c1cp20374f CrossRefPubMedGoogle Scholar
  145. 145.
    Asanuma H, Noguchi H, Uosalki K, Yu HZ (2008) Metal cation-induced deformation of DNA self-assembled monolayers on silicon: vibrational sum frequency generation spectroscopy. J Am Chem Soc 130(25):8016–8022.  https://doi.org/10.1021/ja801023r CrossRefPubMedGoogle Scholar
  146. 146.
    Diesner MO, Welle A, Kazanci M, Kaiser P, Spatz J, Koelsch P (2011) In vitro observation of dynamic ordering processes in the extracellular matrix of living, adherent cells. Biointerphases 6(4):171–179.  https://doi.org/10.1116/1.3651142 CrossRefPubMedGoogle Scholar
  147. 147.
    Diesner MO, Howell C, Kurz V, Verreault D, Koelsch P (2010) In vitro characterization of surface properties through living cells. J Phys Chem Lett 1(15):2339–2342.  https://doi.org/10.1021/jz100742j CrossRefGoogle Scholar
  148. 148.
    Howell C, Diesner MO, Grunze M, Koelsch P (2008) Probing the extracellular matrix with sum-frequency-generation spectroscopy. Langmuir 24(24):13819–13821.  https://doi.org/10.1021/la8027463 CrossRefPubMedGoogle Scholar
  149. 149.
    Cimatu KA, Baldelli S (2009) Chemical microscopy of surfaces by sum frequency generation imaging. J Phys Chem C 113(38):16575–16588.  https://doi.org/10.1021/jp904015s CrossRefGoogle Scholar
  150. 150.
    Cimatu K, Moore HJ, Barriet D, Chinwangso P, Lee TR, Baldelli S (2008) Sum frequency generation imaging microscopy of patterned self-assembled monolayers with terminal -CH3, -OCH3, -CF2CF3, -C = C, -phenyl, and -cyclopropyl groups. J Phys Chem C 112(37):14529–14537.  https://doi.org/10.1021/jp804707w CrossRefGoogle Scholar
  151. 151.
    Fang M, Baldelli S (2017) Surface-induced heterogeneity analysis of an alkanethiol monolayer on microcrystalline copper surface using sum frequency generation imaging microscopy. J Phys Chem C 121(3):1591–1601.  https://doi.org/10.1021/acs.jpcc.6b09403 CrossRefGoogle Scholar
  152. 152.
    Wang HY, Gao T, Xiong W (2017) Self-phase-stabilized heterodyne vibrational sum frequency generation microscopy. ACS Photonics 4(7):1839–1845.  https://doi.org/10.1021/acsphotonics.7b00411 CrossRefGoogle Scholar
  153. 153.
    Wang HF, Yan ECY, Liu Y, Eisenthal KB (1998) Energetics and population of molecules at microscopic liquid and solid surfaces. J Phys Chem B 102(23):4446–4450.  https://doi.org/10.1021/jp980491y CrossRefGoogle Scholar
  154. 154.
    Yan ECY, Eisenthal KB (1999) Probing the interface of microscopic clay particles in aqueous solution by second harmonic generation. J Phys Chem B 103(29):6056–6060.  https://doi.org/10.1021/jp990807h CrossRefGoogle Scholar
  155. 155.
    Yan ECY, Liu Y, Eisenthal KB (1998) New method for determination of surface potential of microscopic particles by second harmonic generation. J Phys Chem B 102(33):6331–6336.  https://doi.org/10.1021/jp981335u CrossRefGoogle Scholar
  156. 156.
    Dadap JI, Shan J, Eisenthal KB, Heinz TF (1999) Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material. Phys Rev Lett 83(20):4045–4048.  https://doi.org/10.1103/PhysRevLett.83.4045 CrossRefGoogle Scholar
  157. 157.
    Yan ECY, Eisenthal KB (2000) Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation. Biophys J 79(2):898–903CrossRefGoogle Scholar
  158. 158.
    Liu Y, Yan ECY, Eisenthal KB (2001) Effects of bilayer surface charge density on molecular adsorption and transport across liposome bilayers. Biophys J 80(2):1004–1012CrossRefGoogle Scholar
  159. 159.
    Liu J, Subir M, Nguyen K, Eisenthal KB (2008) Second harmonic studies of ions crossing liposome membranes in real time. J Phys Chem B 112(48):15263–15266.  https://doi.org/10.1021/jp806690z CrossRefPubMedGoogle Scholar
  160. 160.
    Yang N, Angerer WE, Yodh AG (2001) Angle-resolved second-harmonic light scattering from colloidal particles. Phys Rev Lett 87(10):103902.  https://doi.org/10.1103/PhysRevLett.87.103902 CrossRefPubMedGoogle Scholar
  161. 161.
    Shang XM, Liu Y, Yan E, Eisenthal KB (2001) Effects of counterions on molecular transport across liposome bilayer: probed by second harmonic generation. J Phys Chem B 105(51):12816–12822.  https://doi.org/10.1021/jp0120918 CrossRefGoogle Scholar
  162. 162.
    Dadap JI, Shan J, Heinz TF (2004) Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit. J Opt Soc Am B 21(7):1328–1347.  https://doi.org/10.1364/josab.21.001328 CrossRefGoogle Scholar
  163. 163.
    Jen SH, Dai HL (2006) Probing molecules adsorbed at the surface of nanometer colloidal particles by optical second-harmonic generation. J Phys Chem B 110(46):23000–23003.  https://doi.org/10.1021/jp0644762 CrossRefPubMedGoogle Scholar
  164. 164.
    Schneider L, Schmid HJ, Peukert W (2007) Influence of particle size and concentration on the second-harmonic signal generated at colloidal surfaces. Appl Phys B 87(2):333–339.  https://doi.org/10.1007/s00340-007-2597-7 CrossRefGoogle Scholar
  165. 165.
    Haber LH, Kwok SJJ, Semeraro M, Eisenthal KB (2011) Probing the colloidal gold nanoparticle/aqueous interface with second harmonic generation. Chem Phys Lett 507(1–3):11–14.  https://doi.org/10.1016/j.cplett.2011.03.042 CrossRefGoogle Scholar
  166. 166.
    Das A, Chakrabarti A, Das PK (2016) Probing protein adsorption on a nanoparticle surface using second harmonic light scattering. Phys Chem Chem Phys 18(35):24325–24331.  https://doi.org/10.1039/c6cp02196d CrossRefPubMedGoogle Scholar
  167. 167.
    Roke S, Bonn M, Petukhov AV (2004) Nonlinear optical scattering: the concept of effective susceptibility. Phys Rev B 70(11):115106.  https://doi.org/10.1103/PhysRevB.70.115106 CrossRefGoogle Scholar
  168. 168.
    de Beer AGF, Roke S (2010) Obtaining molecular orientation from second harmonic and sum frequency scattering experiments in water: angular distribution and polarization dependence. J Chem Phys 132(23):2347025.  https://doi.org/10.1063/1.3429969 CrossRefGoogle Scholar
  169. 169.
    de Aguiar HB, Scheu R, Jena KC, de Beer AGF, Roke S (2012) Comparison of scattering and reflection SFG: a question of phase-matching. Phys Chem Chem Phys 14(19):6826–6832.  https://doi.org/10.1039/c2cp40324b CrossRefPubMedGoogle Scholar
  170. 170.
    de Beer AGF, Roke S (2009) Nonlinear Mie theory for second-harmonic and sum-frequency scattering. Phys Rev B 79(15):155420.  https://doi.org/10.1103/PhysRevB.79.155420 CrossRefGoogle Scholar
  171. 171.
    de Beer AGF, Roke S (2007) Sum frequency generation scattering from the interface of an isotropic particle: geometrical and chiral effects. Phys Rev B 75(24):245438.  https://doi.org/10.1103/PhysRevB.75.245438 CrossRefGoogle Scholar
  172. 172.
    de Beer AGF, Roke S, Dadap JI (2011) Theory of optical second-harmonic and sum-frequency scattering from arbitrarily shaped particles. J Opt Soc Am B 28(6):1374–1384CrossRefGoogle Scholar
  173. 173.
    Vacha R, Rick SW, Jungwirth P, de Beer AGF, de Aguiar HB, Samson JS, Roke S (2011) The orientation and charge of water at the hydrophobic oil droplet-water interface. J Am Chem Soc 133(26):10204–10210.  https://doi.org/10.1021/ja202081x CrossRefPubMedGoogle Scholar
  174. 174.
    Smolentsev N, Smit WJ, Bakker HJ, Roke S (2017) The interfacial structure of water droplets in a hydrophobic liquid. Nat Commun 8:15548.  https://doi.org/10.1038/ncomms15548 CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Strader ML, de Aguiar HB, de Beer AGF, Roke S (2011) Label-free spectroscopic detection of vesicles in water using vibrational sum frequency scattering. Soft Matter 7(10):4959–4963.  https://doi.org/10.1039/c0sm01358g CrossRefGoogle Scholar
  176. 176.
    Smolentsev N, Lutgebaucks C, Okur HI, de Beer AGF, Roke S (2016) Intermolecular headgroup interaction and hydration as driving forces for lipid transmembrane asymmetry. J Am Chem Soc 138(12):4053–4060.  https://doi.org/10.1021/jacs.5b11776 CrossRefPubMedGoogle Scholar
  177. 177.
    Okur HI, Chen YX, Smolentsev N, Zdrali E, Roke S (2017) Interfacial structure and hydration of 3D lipid monolayers in aqueous solution. J Phys Chem B 121(13):2808–2813.  https://doi.org/10.1021/acs.jpcb.7b00609 CrossRefPubMedGoogle Scholar
  178. 178.
    Johansson PK, Koelsch P (2014) Vibrational sum-frequency scattering for detailed studies of collagen fibers in aqueous environments. J Am Chem Soc 136(39):13598–13601.  https://doi.org/10.1021/ja508190d CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departments of Bioengineering & Chemical Engineering, National ESCA & Surface Analysis Center for Biomedical Problems, Molecular Engineering & Sciences InstituteUniversity of WashingtonSeattleUSA

Personalised recommendations