Skip to main content
Log in

Surface Reactivity of the Vanadium Phosphate Catalyst for the Oxidation of Methane

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Using density functional theory (DFT), we compared the reactivity of vanadyl pyrophosphate (VPP) (100), α-VOPO4 (100), and δ-VOPO4 (100) for key elementary steps of the transformation of methane, serving also as model for similar steps that might occur for other hydrocarbon species. We examined in analogous fashion the initial and rate-determining homolytic C–H cleavage and the reaction of methoxy species to methanol. According to these calculated results, the system prefers the oxidation state V3+ for both types of reactions, thus avoiding the unstable oxidation state V2+. On the three surfaces modelled, either bare or hydrogenated, the models indicate a rather similar reactivity for C–H cleavage whereas methoxy species are energetically preferred over methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Horn R, Schlögl R (2015) Catal Lett 145:23–39

    Article  CAS  Google Scholar 

  2. Aasberg-Petersen K, Dybkjær I, Ovesen CV, Schjødt NC, Sehested J, Thomsen SG (2011) J Nat Gas Sci Eng 3:423–459

    Article  CAS  Google Scholar 

  3. Rostrup-Nielsen JR, Sehested J, Nørskov JK (2002) Adv Catal 47:65–139

    CAS  Google Scholar 

  4. Rozanska X, Sauer J (2008) Int J Quantum Chem 108:2223–2229

    Article  CAS  Google Scholar 

  5. Kwapien K, Paier J, Sauer J, Geske M, Zavyalova U, Horn R, Schwach P, Trunschke A, Schlögl R (2014) Angew Chem Int Ed 53:8774–8778

    Article  CAS  Google Scholar 

  6. Cooper CA, Hammond CR, Hutchings GJ, Taylor SH, Willock DJ, Tabata K (2001) Catal Today 71:3–10

    Article  CAS  Google Scholar 

  7. Kumar G, Lau S, Krcha MD, Janik MJ (2016) ACS Catal 6:1812–1821

    Article  CAS  Google Scholar 

  8. Haber J, Witko M (2003) J Catal 216:416–424

    Article  CAS  Google Scholar 

  9. Zavyalova U, Holena M, Schlögl R, Baerns M (2011) ChemCatChem 3:1935–1947

    Article  CAS  Google Scholar 

  10. Labinger JA (1988) Catal Lett 1:371–375

    Article  CAS  Google Scholar 

  11. Driscoll DJ, Martir W, Wang JX (1985) J Am Chem Soc 107:58–63

    Article  CAS  Google Scholar 

  12. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA (2005) J Am Chem Soc 127:1394–1395

    Article  CAS  Google Scholar 

  13. McCormick RL, Alptekin GO, Herring AM, Ohno TR, Dec SF (1997) J Catal 172:160–169

    Article  CAS  Google Scholar 

  14. Inumaru K, Okuhara T, Misono M (1992) Chem Lett 10:1955–1958

    Article  Google Scholar 

  15. Cavani F, Santi DD, Luciani S, Lofberg A, Bordes-Richard E, Cortelli C, Leanza R (2010) Appl Catal A 376:66–75

    Article  CAS  Google Scholar 

  16. Cavani F, Luciani S, Esposti ED, Cortelli C, Leanza R (2010) Chem Eur J 16:1646–1655

    Article  CAS  Google Scholar 

  17. Bluhm H, Hävecker M, Kleimenov E, Knop-Gericke A, Liskowski A, Schlögl R, Su DS (2003) Top Catal 23:99–107

    Article  CAS  Google Scholar 

  18. Orio M, Pantazis DA, Neese F (2009) Photosynth Res 102:443–453

    Article  CAS  Google Scholar 

  19. Ziegler T, Autschbach J (2005) Chem Rev 105:2695–2722

    Article  CAS  Google Scholar 

  20. Greeley J, Nørskov JK, Mavrikakis M (2002) Annu Rev Phys Chem 53:319–348

    Article  CAS  Google Scholar 

  21. Moskaleva L, Chiu C-C, Genest A, Rösch N (2016) Chem Rec. doi:10.1002/tcr.201600048

    Google Scholar 

  22. Zanthoff HW, Sananes-Schultz M, Buchholz SA, Rodemerck U, Kubias B, Baerns M (1998) Appl Catal A 172:49–58

    Article  CAS  Google Scholar 

  23. Haras A, Witko M, Salahub DR, Duarte HA (2003) Surf Sci 538:160–170

    Article  CAS  Google Scholar 

  24. Wang D, Barteau MA (2001) J Catal 197:17–25

    Article  CAS  Google Scholar 

  25. Koyano G, Yamaguchi F, Okuhara T, Misono M (1996) Catal Lett 41:149–152

    Article  CAS  Google Scholar 

  26. Koyano G, Okuhara T, Misono M (1998) J Am Chem Soc 120:767–774

    Article  CAS  Google Scholar 

  27. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  28. Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  29. Kresse G, Furthmüller J (1996) Comput Mat Sci 6:15–50

    Article  CAS  Google Scholar 

  30. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  31. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  33. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  34. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  35. Lutfalla S, Shapovalov V, Bell AT (2011) J Chem Theory Comput 7:2218–2223

    Article  CAS  Google Scholar 

  36. Fu CL, Ho KM (1983) Phys Rev B 28:5480–5486

    Article  CAS  Google Scholar 

  37. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  38. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  39. Trifiro F, Grasselli RK (2014) Top Catal 57:1188–1195

    Article  CAS  Google Scholar 

  40. McQuarrie DA, Simon JD (1999) Molecular thermodynamics. University Science Books, Sausalito, CA

    Google Scholar 

  41. Chang C-R, Zhao Z-J, Köhler K, Genest A, Li J, Rösch N (2012) Catal Sci Technol 2:2238–2248

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Gaussian, Inc., Wallingford

    Google Scholar 

  43. Geupel S, Pilz K, Van Smaalen S, Bullesfeld F, Prokofiev A, Assmus W (2002) Acta Cryst C 58:i9–i13

    Article  Google Scholar 

  44. Gautier R, Gautier R, Hernandez O, Audebrand N, Bataille T, Roiland C, Elkaïm E, Pollès L, Furet E, Fur E (2013) Dalton Trans 42:8124–8131

    Article  CAS  Google Scholar 

  45. Girgsdies F, Schneider M, Brückner A, Ressler T, Schlögl R (2009) Solid State Sci 11:1258–1264

    Article  CAS  Google Scholar 

  46. Chiu C, Genest A, Borgna A, Rösch N (2014) ACS Catal 4:4178–4188

    Article  CAS  Google Scholar 

  47. Alexopoulos K, Reyniers M-F, Marin GB (2012) J Catal 289:127–139

    Article  CAS  Google Scholar 

  48. Cheng M-J, Goddard WA (2013) J Am Chem Soc 135:4600–4603

    Article  CAS  Google Scholar 

  49. Cheng M-J, Goddard WA, Fu R (2014) Top Catal 57:1171–1187

    Article  CAS  Google Scholar 

  50. Miyamoto K, Nitadori T, Mizuno N, Okuhara T, Misono M (1988) Chem Lett 17:303–306

    Article  Google Scholar 

  51. Centi G, Fornasari G, Trifiro F (1984) J Catal 89:44–51

    Article  CAS  Google Scholar 

  52. Pepera MA, Callahan JL, Desmond MJ, Milberger EC, Blum PR, Bremer NJ (1985) J Am Chem Soc 107:4883–4892

    Article  CAS  Google Scholar 

  53. Campbell CT, Sellers JRV (2012) J Am Chem Soc 134:18109–18115

    Article  CAS  Google Scholar 

  54. Kozuch S, Shaik S (2008) J Phys Chem A 112:6032–6041

    Article  CAS  Google Scholar 

  55. Kozuch S, Shaik S (2006) J Am Chem Soc 128:3355–3365

    Article  CAS  Google Scholar 

  56. Rozanska X, Fortrie R, Sauer J (2014) J Am Chem Soc 136:7751–7761

    Article  CAS  Google Scholar 

  57. Cheng M-J, Chenoweth K, Oxgaard J, van Duin A, Goddard WA (2007) J Phys Chem C 111:5115–5127

    Article  CAS  Google Scholar 

  58. Rozanska X, Sauer J (2009) J Phys Chem A 113:11586–11594

    Article  CAS  Google Scholar 

  59. Silversmit G, Depla D, Poelman H, Marin GB (2004) J Electron Spectrosc Relat Phenom 135:167–175

    Article  CAS  Google Scholar 

  60. Coulston GW, Thompson EA, Herron N (1996) J Catal 163:122–129

    Article  CAS  Google Scholar 

  61. Suchorski Y, Rihko-Struckmann L, Klose F, Ye Y, Alandjiyska M, Sundmacher K, Weiss H (2005) Appl Surf Sci 249:231–237

    Article  CAS  Google Scholar 

  62. Kleimenov E, Bluhm H, Hävecker M, Knop-Gericke A, Pestryakov A, Teschner D, Lopez-Sanchez JA, Bartley JK, Hutchings GJ, Schlögl R (2005) Surf Sci 575:181–188

    Article  CAS  Google Scholar 

  63. Dummer NF, Bartley JK, Hutchings GJ (2011) Adv Catal 54:189–247

    CAS  Google Scholar 

  64. Bartley JK, Dummer NF, Hutchings GJ (2009) In: Jackson SD, Hargreaves JSJ (eds) Metal oxide catalysis. Wiley, Hoboken, pp 499–537

    Google Scholar 

  65. Bordes-Richards E, Shekari A, Patience GS (2014) In: Duprez D, Cavani F (eds) Handbook of advanced methods and processes in oxidation catalysis, vol 1. Imperial College Press, London, pp 549–585

    Chapter  Google Scholar 

  66. Carreon MA, Guliants VV (2011) In: Hess C, Schlögl R (eds) Nanostructured catalysts: selective oxidation. Royal Society of Chemistry, Cambridge, pp 141–168

    Chapter  Google Scholar 

  67. Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255–263

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.F. thanks Shrabani Dinda, Velina Markova, Weina Zhao, and Bimal Pudasaini for helpful discussions. We acknowledge generous computing resources at the National Supercomputing Centre Singapore and the A*STAR Computational Resource Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Notker Rösch.

Additional information

The authors dedicate this work to the memory of the late Professor Helmut Knözinger. He provided invaluable mentorship to both senior authors, by guiding G.M. through is Ph.D. research and by introducing N.R. to the surface science of oxide materials.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 528 KB)

Supplementary material 2 (ZIP 237 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fjermestad, T., Genest, A., Li, W. et al. Surface Reactivity of the Vanadium Phosphate Catalyst for the Oxidation of Methane. Top Catal 60, 1698–1708 (2017). https://doi.org/10.1007/s11244-017-0848-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0848-3

Keywords

Navigation