Skip to main content
Log in

Ni-Amino Acid–CaAl-Layered Double Hydroxide Composites: Construction, Characterization and Catalytic Properties in Oxidative Transformations

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Host–guest composite materials were prepared applying the anionic forms of Ni(II)-amino acid (l-histidine, l-cysteine, and l-tyrosine) as the guests and CaAl-layered double hydroxide (CaAl-LDH) as the host. The syntheses were performed either by introducing the amino acid anions first and then constructing the metal ion–amino acid complexes or intercalating the pre-prepared complexes in anionic forms. The pristine as well as the composite LDH samples were structurally characterized by X-ray diffractometry, mid IR spectroscopy and scanning electron microscopy. The structural features of the interlayer complexes were studied by UV–Vis, inductively coupled plasma optical emission, mid and far IR and X-ray absorption spectroscopies as well as energy-dispersed X-ray analysis. On the basis of the acquired data, structural models were constructed. The composites were applied as catalysts in the liquid-phase oxidation of cyclohexene applying peracetic acid and the in situ formed iodosyl benzene as oxidants. Using peracetic acid afforded epoxide, while applying iodosyl benzene provided cis diol as the major or exclusive oxidation product. The catalysts displayed good recycling properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

References

  1. Luechinger M, Kienhöfer A, Pirngruber GD (2006) Chem Mater 18:1330

    Article  CAS  Google Scholar 

  2. Suzuki K, Oldenburg PD, Que L Jr (2008) Angew Chem Int Ed 47:1887

    Article  CAS  Google Scholar 

  3. Groothaert MH, van Bokhoven JA, Battiston AA, Weckhuysen BM, Schoonheydt RA (2003) J Am Chem Soc 125:7629

    Article  CAS  Google Scholar 

  4. Gutmann NH, Spiccia L, Turney TW (2000) J Mater Chem 10:1219

    Article  CAS  Google Scholar 

  5. Sharma RK, Rawat D (2012) Inorg Chem Commun 17:58

    Article  CAS  Google Scholar 

  6. MacLeod TCO, Kopylovich MN, da Silva MFCG, Mahmudov KT, Pombeiro AJL (2012) Appl Catal A 439–440:15

    Article  Google Scholar 

  7. Evans GD, Slade RCT (2006) Struct Bond 119:1

    CAS  Google Scholar 

  8. Mills SJ, Christy AG, Génin J-MR, Kameda T, Colombo F (2012) Mineral Mag 76:1289

    Article  CAS  Google Scholar 

  9. Chen Y, Shui Z, Chen W, Chen G (2015) Constr Build Mater 93:1051

    Article  Google Scholar 

  10. Park M, Lee C, Lee E-J, Choy J-H, Kim J-E, Choi J (2004) J Phys Chem Solids 65:513

    Article  CAS  Google Scholar 

  11. Bugris V, Haspel H, Kukovecz Á, Kónya Z, Sipiczki M, Sipos P, Pálinkó I (2013) J Mol Struct 1044:26

    Article  CAS  Google Scholar 

  12. Tichit D, Lorret O, Coq B, Prinetto F, Ghiotti G (2005) Microporous Mesoporous Mat 80:213

    Article  CAS  Google Scholar 

  13. Inayat A, Klumpp M, Schwieger W (2011) Appl Clay Sci 51:452

    Article  CAS  Google Scholar 

  14. Ferencz Z, Kukovecz Á, Kónya Z, Sipos P, Pálinkó I (2015) Appl Clay Sci 112–113:94

    Article  Google Scholar 

  15. Rives V, Ulibarri MA (1999) Coord Chem Rev 181:61

    Article  CAS  Google Scholar 

  16. Varga G, Kukovecz Á, Kónya Z, Korecz L, Muráth S, Csendes Z, Peintler G, Carlson S, Sipos P, Pálinkó I (2016) J Catal 335:125

    Article  CAS  Google Scholar 

  17. Varga G, Ziegenheim S, Muráth S, Csendes Z, Kukovecz Á, Kónya Z, Carlson S, Korecz L, Varga E, Pusztai P, Sipos S, Pálinkó I (2016) J Mol Catal A 423:49

    Article  CAS  Google Scholar 

  18. Coronado E, Galán-Mascarós JR, Martí-Gastaldo C, Ribera A (2006) Chem Mater 18:6112

    Article  CAS  Google Scholar 

  19. Bhattacharjee S, Anderson JA (2004) Chem Commun (5):554. doi:10.1039/B315325H

  20. Bhattacharjee S, Anderson JA (2004) Catal Lett 95:119

    Article  CAS  Google Scholar 

  21. Bhattacharjee S, Dines TJ, Anderson JA (2004) J Catal 225:398

    Article  CAS  Google Scholar 

  22. Bhattacharjee S, Anderson JA (2006) Adv Synth Catal 348:151

    Article  CAS  Google Scholar 

  23. Bhattacharjee S, Dines TJ, Anderson JA (2008) J Phys Chem C 112:14124

    Article  CAS  Google Scholar 

  24. Dai L, Zhang J, Wang X, Chen Y (2013) RSC Adv 3:19885

    Article  CAS  Google Scholar 

  25. Liu Y, An Z, Zhao L, Liu H, He J (2013) Ind Eng Chem Res 52:17821

    Article  CAS  Google Scholar 

  26. Monteiro B, Gago S, Balula SS, Valente AA, Gonçalves IS, Pillinger M (2009) J Mol Catal A 312:23

    Article  CAS  Google Scholar 

  27. Wang M-Z, Li Y, Ji J-J, Huang G-L, Zhang X, Li S-H, Yang X-J (2013) Chin Chem Lett 24:593

    Article  Google Scholar 

  28. Wang X, Wu G, Liu X, Zhang C, Lin Q (2016) Catal Lett 146:620

    Article  CAS  Google Scholar 

  29. Lukashin AV, Vertegel AA, Eliseev AA, Nikiforov MP, Gornert P, Tretyakov YD (2003) J Nanoparticle Res 5:455

    Article  CAS  Google Scholar 

  30. Tarasov KA, Isupov VA, Yulikov MM, Yermakov AE, O’Hare D (2003) Solid State Phenom 90–91:527

    Article  Google Scholar 

  31. Wu G, Wang L, Yang L, Yang J (2007) Eur J Inorg Chem 2007:799

    Article  Google Scholar 

  32. Gérardin C, Kostadinova D, Sanson N, Coq B, Tichit D (2005) Chem Mater 17:6473

    Article  Google Scholar 

  33. Wang L-Y, Wu G-Q, Evans DG (2007) Mater Chem Phys 104:133

    Article  CAS  Google Scholar 

  34. de Faria DLA, Constantino VRL, Baldwin KJ, Batchelder DN, Pinnavaia TJ, Chibwe M (1998) J Raman Spectrosc 29:103

    Article  Google Scholar 

  35. Layrac C, Destarac M, Gérardin C, Tichit D (2014) Langmuir 30:9663

    Article  CAS  Google Scholar 

  36. Pavlovic M, Li L, Dits F, Gu Z, Ádok-Sipiczki M, Szilagyi I (2016) RSC Adv 6:16159

    Article  CAS  Google Scholar 

  37. Pavlovic M, Rouster P, Oncsik T, Szilagyi I (2017) Chem Plus Chem 82:121

    CAS  Google Scholar 

  38. George GN, Pickering IF, (1995) EXAFSPAK: a suite of computer programs for analysis of X-ray absorption spectra. Stanford Synchrotron Radiation Laboratory, Stanford, CA. http://www-ssrl.slac.stanford.edu/exafspak.html Accessed August 2016

  39. Williams GR, Khan AI, O’Hare D (2006) Struct Bond 119:161

    Article  CAS  Google Scholar 

  40. Silverstein RM, Webster FX (2009), Spectrometric identification of organic compounds, 6th edn. Wiley, New York, p 97

    Google Scholar 

  41. Varga G, Csendes Z, Peintler G, Berkesi O, Sipos P, Pálinkó I (2014) Spectrochim Acta A 122:257

    Article  CAS  Google Scholar 

  42. de Vos DE, Sels BF, Jacobs PA (2002) Cattech 6:14

    Article  Google Scholar 

  43. In J-H, Park S-E, Song R, Nam W (2003) Inorg Chim Acta 343:373

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund of Hungary through grant OTKA NKFI 106234. The financial help is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Pálinkó.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varga, G., Timár, Z., Muráth, S. et al. Ni-Amino Acid–CaAl-Layered Double Hydroxide Composites: Construction, Characterization and Catalytic Properties in Oxidative Transformations. Top Catal 60, 1429–1438 (2017). https://doi.org/10.1007/s11244-017-0824-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0824-y

Keywords

Navigation