Skip to main content

Advertisement

Log in

Exploring the Redox Behavior of La0.6Sr0.4Mn1−xAlxO3 Perovskites for CO2-Splitting in Thermochemical Cycles

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Mixed oxides with perovskite structure have been proposed as promising alternative for the solar fuel production via thermochemical redox cycles. For this work, the system La0.6Sr0.4Mn1−xAlxO3 (x = 0 to 0.8) was selected according to its high thermal stability and rapid oxidation kinetics, and the influence of the Al/Mn ratio on the redox properties was investigated. The characterization of the five oxides samples with different Al content confirmed the high redox capacity and the favorable behavior of these materials in consecutive cycles, as analyzed thermogravimetrically. The results show that following reduction at 1300 °C in inert atmosphere up to 0.32 mmol g−1 of O2 are released, while a 10-cycle reaction test confirms the feasibility of long term operation with these perovskites. It was observed that the reduction extent was enhanced with increasing the Al-content, but the oxidation degree is maximum for compositions near x = 0.5, corresponding to an O2 release of 0.318 mmol g−1 (δ = 0.132). After selecting the compositions with more promising redox properties, additional reactions were performed in a lab-scale fixed bed reactor with injection of CO2 in the oxidation step at 900 °C in order to generate CO. In these tests, the most interesting results were obtained for the perovskite La0.6Sr0.4Mn0.6Al0.4O3, with reduction extent of 0.266 mmol g−1, but the production of CO is in comparison significantly lower (0.114 mmol g−1). Further studies are required to determine the best operation conditions for thermochemical cycles using those materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Steinfeld A, Palumbo R (2003) Solar thermochemical process technology. In: Encyclopedia of physical science and technology. Elsevier, Amsterdam, pp 237–256

    Chapter  Google Scholar 

  2. Serpone N, Lawless D, Terzian R (1992) Solar fuels: status and perspectives. Sol Energy 49:221–234. doi:10.1016/0038-092X(92)90001-Q

    Article  CAS  Google Scholar 

  3. Abanades S, Charvin P, Lemont F, Flamant G (2008) Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen. Int J Hydrog Energy 33:6021–6030. doi:10.1016/j.ijhydene.2008.05.042

    Article  CAS  Google Scholar 

  4. Agrafiotis C, Roeb M, Sattler C (2015) A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew Sustain Energy Rev 42:254–285. doi:10.1016/j.rser.2014.09.039

    Article  CAS  Google Scholar 

  5. Allendorf MD, Diver RB, Siegel NP, Miller JE (2008) Two-step water splitting using mixed-metal ferrites: thermodynamic analysis and characterization of synthesized materials. Energy Fuels 22:4115–4124. doi:10.1021/ef8005004

    Article  CAS  Google Scholar 

  6. Kodama T, Kondoh Y, Yamamoto R et al (2005) Thermochemical hydrogen production by a redox system of ZrO2-supported Co(II)-ferrite. Sol Energy 78:623–631. doi:10.1016/j.solener.2004.04.008

    Article  CAS  Google Scholar 

  7. Kuhn M, Bishop SR, Rupp JLM, Tuller HL (2013) Structural characterization and oxygen nonstoichiometry of ceria-zirconia (Ce1−xZrxO2−δ) solid solutions. Acta Mater 61:4277–4288. doi:10.1016/j.actamat.2013.04.001

    Article  CAS  Google Scholar 

  8. Marugán J, Botas JA, Martín M et al (2012) Study of the first step of the Mn2O3/MnO thermochemical cycle for solar hydrogen production. Int J Hydrog Energy 37:7017–7025. doi:10.1016/j.ijhydene.2011.10.124

    Article  Google Scholar 

  9. Nakamura T (1977) Hydrogen production from water utilizing solar heat at high temperatures. Sol Energy 19:467–475. doi:10.1016/0038-092X(77)90102-5

    Article  CAS  Google Scholar 

  10. Scheffe JR, Li J, Weimer AW (2010) A spinel ferrite/hercynite water-splitting redox cycle. Int J Hydrog Energy 35:3333–3340. doi:10.1016/j.ijhydene.2010.01.140

    Article  CAS  Google Scholar 

  11. Scheffe JR, McDaniel AH, Allendorf MD, Weimer AW (2013) Kinetics and mechanism of solar-thermochemical H2 production by oxidation of a cobalt ferrite–zirconia composite. Energy Environ Sci 6:963. doi:10.1039/c3ee23568h

    Article  CAS  Google Scholar 

  12. Scheffe JR, Steinfeld A (2014) Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review. Mater Today 17:341–348. doi:10.1016/j.mattod.2014.04.025

    Article  CAS  Google Scholar 

  13. Steinfeld A (2002) Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int J Hydrog Energy 27:611–619. doi:10.1016/S0360-3199(01)00177-X

    Article  CAS  Google Scholar 

  14. Steinfeld A, Meier A (2004) Solar fuels and materials. Encycl. Energy 5:15. doi:10.1016/B0-12-176480-X/00322-3

    Google Scholar 

  15. Xiao L, Wu S-Y, Li Y-R (2012) Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions. Renew Energy 41:1–12. doi:10.1016/j.renene.2011.11.023

    Article  Google Scholar 

  16. Michalsky R, Botu V, Hargus CM et al (2015) Design principles for metal oxide redox materials for solar-driven isothermal fuel production. Adv Energy Mater 5:1–10. doi:10.1002/aenm.201401082

    Article  Google Scholar 

  17. Scheffe JR, Steinfeld A (2012) Thermodynamic analysis of cerium-based oxides for solar thermochemical fuel production. Energy Fuels 26:1928–1936. doi:10.1021/ef201875v

    Article  CAS  Google Scholar 

  18. Scheffe JR, Jacot R, Patzke GR, Steinfeld A (2013) Synthesis, characterization, and thermochemical redox performance of Hf4+, Zr4+, and Sc3+ doped ceria for splitting CO2. J Phys Chem C 117:24104–24114. doi:10.1021/jp4050572

    Article  CAS  Google Scholar 

  19. Hao Y, Yang C-K, Haile SM (2014) Ceria–Zirconia solid solutions (Ce1–xZrxO2–δ, x ≤ 0.2) for solar thermochemical water splitting: a thermodynamic study. Chem Mater 26:6073–6082. doi:10.1021/cm503131p

    Article  CAS  Google Scholar 

  20. Kang M, Zhang J, Wang C et al (2013) CO2 splitting via two step thermochemical reactions over doped ceria/zirconia solid solutions. RSC Adv 3:18878–18885. doi:10.1039/C3RA43742F

    Article  CAS  Google Scholar 

  21. Ramos-Fernandez E V., Shiju NR, Rothenberg G (2014) Understanding the solar-driven reduction of CO2 on doped ceria. RSC Adv 4:16456. doi:10.1039/c4ra01242a

    Article  CAS  Google Scholar 

  22. Marxer D, Furler P, Scheffe J et al (2015) Demonstration of the entire production chain to renewable kerosene via solar thermochemical splitting of H2O and CO2. Energy Fuels 29:3241–3250. doi:10.1021/acs.energyfuels.5b00351

    Article  CAS  Google Scholar 

  23. Takacs M, Hoes M, Caduff M et al (2016) Oxygen nonstoichiometry, defect equilibria, and thermodynamic characterization of LaMnO3 perovskites with Ca/Sr A-site and Al B-site doping. Acta Mater 103:700–710. doi:10.1016/j.actamat.2015.10.026

    Article  CAS  Google Scholar 

  24. Yang C-K, Yamazaki Y, Aydin A, Haile SM (2014) Thermodynamic and kinetic assessments of strontium-doped lanthanum manganite perovskites for two-step thermochemical water splitting. J Mater Chem A 2:13612–13623. doi:10.1039/C4TA02694B

    Article  CAS  Google Scholar 

  25. Bork AH, Kubicek M, Struzik M, Rupp JLM (2015) Perovskite La0.6Sr0.4Cr1–xCoxO3–δ solid solutions for solar-thermochemical fuel production: strategies to lower the operation temperature. J Mater Chem A 3:15546–15557. doi:10.1039/C5TA02519B

    Article  CAS  Google Scholar 

  26. Scheffe JR, Weibel D, Steinfeld A (2013) Lanthanum–Strontium–Manganese perovskites as redox materials for solar thermochemical splitting of H2O and CO2. Energy Fuels 27:4250–4257. doi:10.1021/ef301923h

    Article  CAS  Google Scholar 

  27. Demont A, Abanades S (2014) High redox activity of Sr-substituted lanthanum manganite perovskites for two-step thermochemical dissociation of CO2. RSC Adv 4:54885–54891. doi:10.1039/C4RA10578H

    Article  CAS  Google Scholar 

  28. Dey S, Naidu BS, Govindaraj A, Rao CNR (2015) Noteworthy performance of La1–xCaxMnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2. Phys Chem Chem Phys 17:122–125. doi:10.1039/C4CP04578E

    Article  CAS  Google Scholar 

  29. Bork AH, Povoden-Karadeniz E, Rupp JLM (2016) Modeling thermochemical solar-to-fuel conversion: CALPHAD for thermodynamic assessment studies of perovskites, exemplified for (La,Sr)MnO3. Adv Energy Mater. doi:10.1002/aenm.201601086

    Google Scholar 

  30. Deml AM, Stevanović V, Holder AM et al (2014) Tunable oxygen vacancy formation energetics in the complex perovskite oxide SrxLa1−xMnyAl1−yO3. Chem Mater 26:6595–6602. doi:10.1021/cm5033755

    Article  CAS  Google Scholar 

  31. Demont A, Abanades S (2015) Solar thermochemical conversion of CO2 into fuel via two-step redox cycling of non-stoichiometric Mn-containing perovskite oxides. J Mater Chem A 3:3536–3546. doi:10.1039/C4TA06655C

    Article  CAS  Google Scholar 

  32. Dey S, Naidu BS, Rao CNR (2016) Beneficial effects of substituting trivalent ions in the B-site of La0.5Sr0.5Mn1−xAxO3 (A = Al, Ga, Sc) on the thermochemical generation of CO and H2 from CO2 and H2O. Daltan Trans 45:2430–2435. doi:10.1039/C5DT04822B

    Article  CAS  Google Scholar 

  33. Jiang Q, Tong J, Zhou G et al (2014) Thermochemical CO2 splitting reaction with supported LaxA1–xFeyB1–yO3 (A = Sr, Ce, B = Co, Mn; 0 ≤ x, y ≤ 1) perovskite oxides. Sol Energy 103:425–437. doi:10.1016/j.solener.2014.02.033

    Article  CAS  Google Scholar 

  34. McDaniel AH, Miller EC, Arifin D et al (2013) Sr- and Mn-doped LaAlO3–δ for solar thermochemical H2 and CO production. Energy. Environ Sci 6:2424. doi:10.1039/c3ee41372a

    CAS  Google Scholar 

  35. Nalbandian L, Evdou A, Zaspalis V (2009) La1–xSrxMO3 (M = Mn, Fe) perovskites as materials for thermochemical hydrogen production in conventional and membrane reactors. Int J Hydrog Energy 34:7162–7172. doi:10.1016/j.ijhydene.2009.06.076

    Article  CAS  Google Scholar 

  36. Gálvez ME, Jacot R, Scheffe J et al (2015) Physico-chemical changes in Ca, Sr and Al-doped La–Mn–O perovskites upon thermochemical splitting of CO2 via redox cycling. Phys Chem Chem Phys 17:6629–6634. doi:10.1039/c4cp05898d

    Article  Google Scholar 

  37. McDaniel AH, Ambrosini A, Coker EN et al (2013) Nonstoichiometric perovskite oxides for solar thermochemical H2 and CO production. Energy Procedi 49:2009–2018. doi:10.1016/j.egypro.2014.03.213

    Article  Google Scholar 

  38. Pechini MP (1967) US Patent No. 3,330,697

  39. Jana P, de la Peña O’Shea VA, Coronado JM, Serrano DP (2010) Cobalt based catalysts prepared by Pechini method for CO2-free hydrogen production by methane decomposition. Int J Hydrog Energy 35:10285–10294. doi:10.1016/j.ijhydene.2010.07.125

    Article  CAS  Google Scholar 

  40. Cooper T, Scheffe JR, Galvez ME et al (2015) Lanthanum Manganite perovskites with Ca/Sr A-site and Al B-site doping as effective oxygen exchange materials for solar thermochemical fuel production. Energy Technol 3:1130–1142. doi:10.1002/ente.201500226

    Article  CAS  Google Scholar 

  41. Xu B, Bhawe Y, Davis ME (2013) Spinel metal oxide-alkali carbonate-based, low-temperature thermochemical cycles for water splitting and CO2 reduction. Chem Mater 25:1564–1571. doi:10.1021/cm3038747

    Article  CAS  Google Scholar 

  42. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  43. Goldschmidt VM (1926) Die Gesetze der Krystallochemie. Naturwissenschaften 14:477–485. doi:10.1007/BF01507527

    Article  CAS  Google Scholar 

  44. Dalach P, Ellis DE, Van De Walle A (2012) First-principles thermodynamic modeling of lanthanum chromate perovskites. Phys Rev B 85:1–13. doi:10.1103/PhysRevB.85.014108

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to “Ramón Areces” Foundation for financial support through the project SOLARKITE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Coronado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sastre, D., Carrillo, A.J., Serrano, D.P. et al. Exploring the Redox Behavior of La0.6Sr0.4Mn1−xAlxO3 Perovskites for CO2-Splitting in Thermochemical Cycles. Top Catal 60, 1108–1118 (2017). https://doi.org/10.1007/s11244-017-0790-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0790-4

Keywords

Navigation