Skip to main content

Advertisement

Log in

Investigation into Ca-Doped LaMnCoO3 Perovskite Oxides for Thermochemical Water Splitting

  • Phase Stability and Transformation of Energy Storage Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Two-step thermochemical water splitting (II-TWS), involving concentrating sunlight, has become prominent for green hydrogen production that does not require H2/O2 separation steps at high temperatures. The kinetics and thermodynamics of redox reactions are important factors that determine hydrogen production efficiency. This efficiency is strongly influenced by the structural properties of active materials used in II-TWS reactions. Perovskite oxides are one of the promising active materials for II-TWS due to their superior oxygen exchange abilities. In this study, La1-xCaxMn0.8Co0.2O3 (LCMC) type perovskites with a wide range of calcium substitution (x = 0, 0.2, 0.4, 0.6, 0.8) were examined for hydrogen production in terms of their structural properties, kinetics, O2/H2 production capacities, and cyclabilities. According to our test results, La0.8Ca0.2Mn0.8Co0.2O3 (LCMC8282) and La0.6Ca0.4Mn0.8Co0.2O3 (LCMC6482) displayed higher H2 production capacity with 256 μmol g−1 and 88 μmol g−1 as compared to the other selected perovskites. After three consecutive cycles, La0.8Ca0.2Mn0.8Co0.2O3 lost 83% of its H2 production capacity whereas La0.6Ca0.4Mn0.8Co0.2O3 preserved 61% of its H2 production capacity achieved in the first cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.N. Veziroğlu and S. Şahin, Energy Convers. Manag. 49, 1820. (2008).

    Google Scholar 

  2. K. Mazloomi and C. Gomes, Renew. Sustain. Energy Rev. 16, 3024. (2012).

    Google Scholar 

  3. J.D. Holladay, J. Hu, D.L. King, and Y. Wang, Catal. Today 139, 244. (2009).

    Google Scholar 

  4. N.S. Lewis and D.G. Nocera, Proc. Natl. Acad. Sci. 103, 15729. (2006).

    Google Scholar 

  5. C.L. Muhich, B.D. Ehrhart, I. Al-Shankiti, B.J. Ward, C.B. Musgrave, and A.W. WeimerWiley Interdiscip. Rev. Energy Environ. 5, 261. (2016).

    Google Scholar 

  6. S. Abanades, Chem. Eng. (2019). https://doi.org/10.3390/chemengineering3030063.

    Article  Google Scholar 

  7. F. Safari and I. Dincer, Energy Convers. Manag. 205, 112182. (2020).

    Google Scholar 

  8. P. Charvin, S. Abanades, G. Flamant, and F. Lemort, Energy 32, 1124. (2007).

    Google Scholar 

  9. H. Kaneko, H. Ishihara, S. Taku, Y. Naganuma, N. Hasegawa, and Y. Tamaura, J. Mater. Sci. 43, 3153. (2008).

    Google Scholar 

  10. N. Gokon, T. Yawata, S. Bellan, T. Kodama, and H.-S. Cho, Energy 171, 971. (2019).

    Google Scholar 

  11. E.N. Coker, A. Ambrosini, M.A. Rodriguez, and J.E. Miller, J. Mater. Chem. 21, 10767. (2011).

    Google Scholar 

  12. J.E. Miller, A.H. McDaniel, and M.D. Allendorf, Adv. Energy Mater. 4, 1. (2014).

    Google Scholar 

  13. W.C. Chueh and S.M. Haile, Philos Trans. R Soc. A Math. Phys. Eng. Sci. 368, 3269. (2010).

    Google Scholar 

  14. A. Le Gal and S. Abanades, Int. J. Hydrogen Energy 36, 4739. (2011).

    Google Scholar 

  15. R. Bader, L.J. Venstrom, J.H. Davidson, and W. Lipiński, Energy Fuels 27, 5533. (2013).

    Google Scholar 

  16. J.R. Scheffe and A. Steinfeld, Mater. Today 17, 341. (2014).

    Google Scholar 

  17. A. Haeussler, S. Abanades, J. Jouannaux, and A. Julbe, Catalysts (2018). https://doi.org/10.3390/catal8120611.

    Article  Google Scholar 

  18. M. Kubicek, A.H. Bork, and J.L.M. Rupp, J. Mater. Chem. A 5, 11983. (2017).

    Google Scholar 

  19. N.F. Atta, A. Galal, and E.H. El-Ads, Perovskite nanomaterials – synthesis, characterization, and applications. In L. Pan, & G. Zhu (Eds.), Perovskite materials - synthesis, characterisation, properties, and applications. IntechOpen. (2016). https://doi.org/10.5772/61280.

  20. A. Demont, S. Abanades, and E. Beche, J. Phys. Chem. C 118, 12682. (2014).

    Google Scholar 

  21. J.R. Scheffe, D. Weibel, and A. Steinfeld, Energy Fuels (2013). https://doi.org/10.1021/ef301923h.

    Article  Google Scholar 

  22. A. Demont and S. Abanades, RSC Adv. 4, 54885. (2014).

    Google Scholar 

  23. M. Takacs, M. Hoes, M. Caduff, T. Cooper, J.R. Scheffe, and A. Steinfeld, Acta Mater. 103, 700. (2016).

    Google Scholar 

  24. S.B. Şanlı and B. Pişkin, Int. J. Hydrogen Energy. (2021). https://doi.org/10.1016/j.ijhydene.2021.12.047.

    Article  Google Scholar 

  25. A. Demont and S. Abanades, J. Mater. Chem. A 3, 3536. (2015).

    Google Scholar 

  26. C.-K. Yang, Y. Yamazaki, A. Aydin, and S.M. Haile, J. Mater. Chem. A 2, 13612. (2014).

    Google Scholar 

  27. S. Dey, B.S. Naidu, and C.N.R. Rao, Chem. A Eur. J. 21, 7077. (2015).

    Google Scholar 

  28. S. Dey, B.S. Naidu, and C.N.R. Rao, Dalt. Trans. 45, 2430. (2016).

    Google Scholar 

  29. L. Wang, T. Ma, S. Dai, T. Ren, Z. Chang, L. Dou, M. Fu, and X. Li, Chem. Eng. J. 389, 124426. (2020).

    Google Scholar 

  30. M. Orfila, M. Linares, R. Molina, J.Á. Botas, R. Sanz, and J. Marugán, Int. J. Hydro. Energy. 41, 19329. (2016).

    Google Scholar 

  31. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751. (1976).

    Google Scholar 

  32. L. Wang, M. Al-Mamun, P. Liu, Y.L. Zhong, Y. Wang, H.G. Yang, and H. Zhao, Acta Metall. Sin. (English Lett. 31, 431. (2018).

    Google Scholar 

  33. L. Wang, M. Al-Mamun, P. Liu, Y. Wang, H.G. Yang, and H. Zhao, J. Mater. Sci. 53, 6796. (2018).

    Google Scholar 

  34. M.M. Nair and S. Abanades, Sust. Energy Fuels 2, 843. (2018).

    Google Scholar 

  35. G. Tang, B. Wu, D. Bai, Y. Wang, R. Bodnar, and C.Q. Zhou, Int. J. Heat Mass Transf. 113, 1142. (2017).

    Google Scholar 

  36. Z. Chen, Q. Jiang, F. Cheng, J. Tong, M. Yang, Z. Jiang, and C. Li, J. Mater. Chem. A 7, 6099. (2019).

    Google Scholar 

  37. A.H. Bork, M. Kubicek, M. Struzik, and J.L.M. Rupp, J. Mater. Chem. A 3, 15546. (2015).

    Google Scholar 

  38. A.E. Danks, S.R. Hall, and Z. Schnepp, Mater. Horiz. 3, 91. (2016).

    Google Scholar 

  39. L. Lutterotti, S. Matthies, and H.R. Wenk, Newsl. CPD 21, 14. (1999).

    Google Scholar 

  40. D.A. Kumar, S. Selvasekarapandian, H. Nithya, J. Leiro, Y. Masuda, S.-D. Kim, and S.-K. Woo, Powder Technol. 235, 140. (2013).

    Google Scholar 

  41. F. He, J. Chen, S. Liu, Z. Huang, G. Wei, G. Wang, Y. Cao, and K. Zhao, Int. J. Hydro. Energy 44, 10265. (2019).

    Google Scholar 

  42. S. Harizanova, E. Faulques, B. Corraze, C. Payen, M. Zajac, D. Wilgocka-ślęzak, J. Korecki, G. Atanasova, and R. Stoyanova, Materials (Basel) (2021). https://doi.org/10.3390/ma14227019.

    Article  Google Scholar 

  43. J.P.H. Li, X. Zhou, Y. Pang, L. Zhu, E.I. Vovk, L. Cong, A.P. Van Bavel, S. Li, and Y. Yang, Phys. Chem. Chem. Phys. 21, 22351. (2019).

    Google Scholar 

  44. M.M. Natile, A. Galenda, and A. Glisenti, Surf. Sci. Spectra 15, 1. (2008).

    Google Scholar 

  45. L. Dahéron, R. Dedryvère, H. Martinez, M. Ménétrier, C. Denage, and C. Delmas Chem. Mater. 20(2), 583–590. (2008). https://doi.org/10.1021/cm702546s.

    Article  Google Scholar 

  46. H. Liu, G.C. Lin, X.D. Ding, and J.X. Zhang, J. Solid State Chem. 200, 305. (2013).

    Google Scholar 

  47. K. Watanabe, M. Yuasa, T. Kida, K. Shimanoe, Y. Teraoka, and N. Yamazoe, Solid State Ionics 179, 1377. (2008).

    Google Scholar 

  48. D. Mierwaldt, S. Mildner, R. Arrigo, A. Knop-Gericke, E. Franke, A. Blumenstein, J. Hoffmann, and C. Jooss, Catalysts 4, 129. (2014).

    Google Scholar 

  49. L. Baggetto, N.J. Dudney, and G.M. Veith, Electrochim. Acta. 90, 135. (2013).

    Google Scholar 

  50. E.S. Ilton, J.E. Post, P.J. Heaney, F.T. Ling, and S.N. Kerisit, Appl. Surf. Sci. 366, 475. (2016).

    Google Scholar 

  51. B. Pişkin, C. Savaş Uygur, and M.K. Aydınol, Int. J. Energy Res. 42, 3888. (2018).

    Google Scholar 

  52. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, and R.S.C. Smart, Appl. Surf. Sci. 257, 2717. (2011).

    Google Scholar 

  53. T. Vijayaraghavan, R. Sivasubramanian, S. Hussain, and A. Ashok, Chem. Select 2, 5570. (2017).

    Google Scholar 

  54. S. Thirumalairajan, K. Girija, V.R. Mastelaro, V. Ganesh, and N. Ponpandian, RSC Adv. 4, 25957. (2014).

    Google Scholar 

  55. R. Dudric, A. Vladescu, V. Rednic, M. Neumann, I.G. Deac, and R. Tetean, J. Mol. Struct. 1073, 66. (2014).

    Google Scholar 

  56. J.L.G. Fierro, Catal. Today 8, 153. (1990).

    Google Scholar 

  57. A.K. Opitz, C. Rameshan, M. Kubicek, G.M. Rupp, A. Nenning, T. Götsch, R. Blume, M. Hävecker, A. Knop-Gericke, G. Rupprechter, B. Klötzer, and J. Fleig, Top. Catal. 61, 2129. (2018).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge TUBITAK (The Scientific and Technological Research Council of Turkey) for their support and funding (project number 119M420). The authors also wish to acknowledge Prof. Dr. Mehmet Öztürk and Prof. Dr. Mehmet Emin Duru for support with mass spectrometer analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berke Pişkin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 360 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yiğiter, İ.E., Pişkin, B. Investigation into Ca-Doped LaMnCoO3 Perovskite Oxides for Thermochemical Water Splitting. JOM 74, 4682–4694 (2022). https://doi.org/10.1007/s11837-022-05493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05493-9

Navigation