Skip to main content
Log in

Synthesis, structural characterization, and cytotoxicity of nickel(II) complexes with 1H-tetrazole-5-acetic acid and oligopyridines

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Nickel(II) complexes of 1H-tetrazol-5-acetic acid (H2L) and oligopyridines (1,10-phenanthroline /2,2’-bipyridine derivatives) have been synthesized and characterized by physicochemical methods (elemental and thermogravimetric analysis, powder X-ray diffraction, and IR spectroscopy). The behavior of the complexes in solution was studied by UV–Vis spectroscopy, conductometry, and mass spectrometry. The stability of the complexes over 48 h in aqueous solution and in phosphate-buffered saline was demonstrated using UV–Vis spectroscopy. These compounds were investigated for their cytotoxic and cytostatic activity against HepG2 (hepatocellular carcinoma), and Hep2 (larynx carcinoma) human cancer cell lines. Cytotoxicity was also studied on human non-cancerous cell line MRC-5 (lung fibroblast). All the compounds did not show cytotoxic activity against the tested cell lines in 1–50-µM concentration range. However, compounds showed a cytostatic effect against HepG2 and Hep2 cell lines. The most pronounced cytostatic properties were found for the complex [Ni(dmphen)2L]·2C2H5OH·2H2O (1). In addition, we report three new crystal structures: [Ni(phen)2L]·H2O, [Ni(dmbipy)2L]·2C2H5OH, and [Ni(dmphen)2L]·2C2H5OH·2H2O, where L2– behaves as a bidentate ligand which is coordinated to the Ni(II) ion via N,O atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Patil SA, Patil SA, Patil R, Keri RS, Budagumpi S, Balakrishna GR, Tacke M (2015) N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs, Future. Med Chem 7:1305–1333. https://doi.org/10.4155/FMC.15.61

    Article  CAS  Google Scholar 

  2. Naderi F, Orojloo M, Kamali S, Jannesar R, Amani S (2022) Synthesis, structural characterization, in vitro biological activity and computational quantum chemical studies of New Cobalt (II) Nickel (II) and Copper (II) Complexes Based on an Azo-Azomethine Ligand. Polycyclic Aromat Compd. https://doi.org/10.1080/10406638.2022.2049325

    Article  Google Scholar 

  3. Cvek B, Milacic V, Taraba J, Dou QP (2008) Ni(II), Cu(II), and Zn(II) diethyldithiocarbamate complexes show various activities against the proteasome in breast cancer cells. J Med Chem 51:6256–6258. https://doi.org/10.1021/JM8007807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dong X, Li Y, Li Z, Cui Y, Zhu H (2012) Synthesis, structures and urease inhibition studies of copper(II) and nickel(II) complexes with bidentate N, O-donor Schiff base ligands. J Inorg Biochem 108:22–29. https://doi.org/10.1016/J.JINORGBIO.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  5. Satheesh CE, Raghavendra Kumar P, Sharma P, Lingaraju K, Palakshamurthy BS, Raja Naika H (2016) Synthesis, characterisation and antimicrobial activity of new palladium and nickel complexes containing Schiff bases. Inorganica Chim Acta. 442:1–9. https://doi.org/10.1016/J.ICA.2015.11.017

    Article  CAS  Google Scholar 

  6. Benoist E, Gestin JF, Blanchard P, Jubault M, Quintard JP (1999) Spectroscopic and electrochemical studies of new copper(II) and nickel(II) N2S2 tetradentate complexes of potential interest to nuclear medicine. Transition Met Chem 24:42–48. https://doi.org/10.1023/A:1006939403074/METRICS

    Article  CAS  Google Scholar 

  7. Millard JT (1999) Molecular probes of DNA structure, comprehensive natural products. Chemistry. https://doi.org/10.1016/B978-0-08-091283-7.00158-2

    Article  Google Scholar 

  8. Kısa D, Korkmaz N, Taslimi P, Tuzun B, Tekin Ş, Karadag A, Şen F (2020) Bioactivity and molecular docking studies of some nickel complexes: New analogues for the treatment of Alzheimer, glaucoma and epileptic diseases. Bioorg Chem 101:104066. https://doi.org/10.1016/J.BIOORG.2020.104066

    Article  PubMed  Google Scholar 

  9. Sigel HSA (1996) Metal Ions In Biological Systems. CRC Press

    Google Scholar 

  10. Abu-Surrah A, Kettunen M (2006) Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr Med Chem 13:1337–1357. https://doi.org/10.2174/092986706776872970

    Article  CAS  PubMed  Google Scholar 

  11. Chohan ZH, Supuran CT, Scozzafava A (2008) Metalloantibiotics: synthesis and antibacterial activity of Cobalt(II), Copper(II), Nickel(II) and Zinc(II) Complexes of Kefzol. J Enzyme Inhib Med Chem 19:79–84. https://doi.org/10.1080/14756360310001624939

    Article  CAS  Google Scholar 

  12. Chohan ZH, Arif M, Shafiq Z, Yaqub M, Supuran CT (2008) In vitro antibacterial, antifungal & cytotoxic activity of some isonicotinoylhydrazide Schiff’s bases and their cobalt (II), copper (II), nickel (II) and zinc (II) complexes. J Enzyme Inhib Med Chem 21:95–103. https://doi.org/10.1080/14756360500456806

    Article  CAS  Google Scholar 

  13. Chohan ZH, Kausar S (1992) Biologically active complexes of nickel(II), copper(II) and zinc(II) with Schiff-base ligand derived from the reaction of 2-aminopyridine and pyrrol-2-carboxaldehyde–their synthesis and characterisation. Chem Pharm Bull 40:2555–2556. https://doi.org/10.1248/CPB.40.2555

    Article  CAS  Google Scholar 

  14. Savir S, Wei ZJ, Liew JWK, Vythilingam I, Lim YAL, Saad HM, Sim KS, Tan KW (2020) Synthesis, cytotoxicity and antimalarial activities of thiosemicarbazones and their nickel (II) complexes. J Mol Struct 1211:128090. https://doi.org/10.1016/J.MOLSTRUC.2020.128090

    Article  CAS  Google Scholar 

  15. Totta X, Papadopoulou AA, Hatzidimitriou AG, Papadopoulos A, Psomas G (2015) Synthesis, structure and biological activity of nickel(II) complexes with mefenamato and nitrogen-donor ligands. J Inorg Biochem 145:79–93. https://doi.org/10.1016/J.JINORGBIO.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  16. Skyrianou KC, Perdih F, Papadopoulos AN, Turel I, Kessissoglou DP, Psomas G (2011) Nickel–quinolones interaction: Part 5—Biological evaluation of nickel(II) complexes with first-, second- and third-generation quinolones. J Inorg Biochem 105:1273–1285. https://doi.org/10.1016/J.JINORGBIO.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  17. Sathyadevi P, Krishnamoorthy P, Jayanthi E, Butorac RR, Cowley AH, Dharmaraj N (2012) Studies on the effect of metal ions of hydrazone complexes on interaction with nucleic acids, bovine serum albumin and antioxidant properties. Inorganica Chim Acta 384:83–96. https://doi.org/10.1016/J.ICA.2011.11.033

    Article  CAS  Google Scholar 

  18. Li Y, Yang ZY, Wu JC (2010) Synthesis, crystal structures, biological activities and fluorescence studies of transition metal complexes with 3-carbaldehyde chromone thiosemicarbazone. Eur J Med Chem 45:5692–5701. https://doi.org/10.1016/J.EJMECH.2010.09.025

    Article  CAS  PubMed  Google Scholar 

  19. Yu H, Zhang W, Yu Q, Huang FP, Bian HD, Liang H (2017) Ni(II) complexes with schiff base ligands: preparation, characterization, dna/protein interaction and cytotoxicity studies. Molecules 22:1772. https://doi.org/10.3390/MOLECULES22101772

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ray S, Asthana J, Tanski JM, Shaikh MM, Panda D, Ghosh P (2009) Design of nickel chelates of tetradentate N-heterocyclic carbenes with subdued cytotoxicity. J Organomet Chem 694:2328–2335. https://doi.org/10.1016/J.JORGANCHEM.2009.03.036

    Article  CAS  Google Scholar 

  21. Buschini A, Pinelli S, Pellacani C, Giordani F, Ferrari MB, Bisceglie F, Giannetto M, Pelosi G, Tarasconi P (2009) Synthesis, characterization and deepening in the comprehension of the biological action mechanisms of a new nickel complex with antiproliferative activity. J Inorg Biochem 103:666–677. https://doi.org/10.1016/J.JINORGBIO.2008.12.016

    Article  CAS  PubMed  Google Scholar 

  22. Göktürk T, Topkaya C, Sakallı Çetin E, Güp R (2022) New trinuclear nickel(II) complexes as potential topoisomerase I/IIα inhibitors: in vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines. Chem Pap 76:2093–2109. https://doi.org/10.1007/S11696-021-02005-Y

    Article  Google Scholar 

  23. Varadaraji D, Suban SS, Ramasamy VR, Kubendiran K, Sankar J, Raguraman KG, Nalilu SK, Pati HN (2010) Synthesis and evaluation of a series of 1-substituted tetrazole derivatives as antimicrobial agents. Org Commun 3:45–56

    CAS  Google Scholar 

  24. Toney JH, Fitzgerald PMD, Grover-Sharma N, Olson SH, May WJ, Sundelof JG, Vanderwall DE, Cleary KA, Grant SK, Wu JK, Kozarich JW, Pompliano DL, Hammond GG (1998) Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-β-lactamase. Chem Biol 5:185–196. https://doi.org/10.1016/S1074-5521(98)90632-9

    Article  CAS  PubMed  Google Scholar 

  25. Myznikov LV, Hrabalek A, Koldobskii GI (2007) Drugs in the tetrazole series. (Review). Chem Heterocycl Compd (N Y). 43:1–9. https://doi.org/10.1007/S10593-007-0001-5

    Article  CAS  Google Scholar 

  26. Lamie PF, Azmey AF (2019) Synthesis and biological evaluation of tetrazole derivatives as TNF-α, IL-6 and COX-2 inhibitors with antimicrobial activity: Computational analysis, molecular modeling study and region-specific cyclization using 2D NMR tools. Bioorg Chem. https://doi.org/10.1016/J.BIOORG.2019.103301

    Article  PubMed  Google Scholar 

  27. Hatamleh AA, Al Farraj D, Al-Saif SS, Chidambaram S, Radhakrishnan S, Akbar I (2020) Synthesis cytotoxic analysis, and molecular docking studies of tetrazole derivatives via N-mannich base condensation as potential antimicrobials. Drug Des Devel Ther. 14:4477–4492. https://doi.org/10.2147/DDDT.S270896

    Article  CAS  Google Scholar 

  28. Labib MB, Fayez AM, E.S. EL-Nahass, M. Awadallah, P.A. Halim, (2020) Novel tetrazole-based selective COX-2 inhibitors Design, synthesis, anti-inflammatory activity, evaluation of PGE2, TNF-α, IL-6 and histopathological study. Bioorg Chem. https://doi.org/10.1016/J.BIOORG.2020.104308

    Article  PubMed  Google Scholar 

  29. Kabi AK, Sravani S, Gujjarappa R, Garg A, Vodnala N, Tyagi U, Kaldhi D, Velayutham R, Singh V, Gupta S, Malakar CC (2022) An overview on biological evaluation of tetrazole derivatives materials horizons. From Nature to Nanomaterials. https://doi.org/10.1007/978-981-16-8399-2_8/FIGURES/29

    Article  Google Scholar 

  30. Ostrovskii VA, Popova EA, Trifonov RE (2017) Developments in tetrazole chemistry (2009–16). Adv Heterocycl Chem 123:1–62. https://doi.org/10.1016/BS.AIHCH.2016.12.003

    Article  CAS  Google Scholar 

  31. Gao F, Xiao J, Huang G (2019) Current scenario of tetrazole hybrids for antibacterial activity. Eur J Med Chem 184:111744. https://doi.org/10.1016/J.EJMECH.2019.111744

    Article  CAS  PubMed  Google Scholar 

  32. Nami S, Aghebati-Maleki A, Morovati H, Aghebati-Maleki L (2019) Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed Pharmacother 110:857–868. https://doi.org/10.1016/J.BIOPHA.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  33. Gonzalez-Lara MF, Sifuentes-Osornio J, Ostrosky-Zeichner L (2017) Drugs in clinical development for fungal infections. Drugs 77:1505–1518. https://doi.org/10.1007/S40265-017-0805-2/FIGURES/5

    Article  CAS  PubMed  Google Scholar 

  34. Wang SQ, Wang YF, Xu Z (2019) Tetrazole hybrids and their antifungal activities. Eur J Med Chem 170:225–234. https://doi.org/10.1016/J.EJMECH.2019.03.023

    Article  CAS  PubMed  Google Scholar 

  35. Bommagani S, Penthala NR, Balasubramaniam M, Kuravi S, Caldas-Lopes E, Guzman ML, Balusu R, Crooks PA (2019) A novel tetrazole analogue of resveratrol is a potent anticancer agent. Bioorg Med Chem Lett 29:172–178. https://doi.org/10.1016/J.BMCL.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  36. Popova EA, Protas AV, Trifonov RE (2018) Tetrazole derivatives as promising anticancer agents. Anticancer Agents Med Chem. https://doi.org/10.2174/1871520617666170327143148

    Article  PubMed  Google Scholar 

  37. Zhang J, Wang S, Ba Y, Xu Z (2019) Tetrazole hybrids with potential anticancer activity. Eur J Med Chem 178:341–351. https://doi.org/10.1016/J.EJMECH.2019.05.071

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Roh J, Karabanovich G, Vlčková H, Carazo A, Němeček J, Sychra P, Valášková L, Pavliš O, Stolaříková J, Klimešová V, Vávrová K, Pávek P, Hrabálek A (2017) Development of water-soluble 3,5-dinitrophenyl tetrazole and oxadiazole antitubercular agents. Bioorg Med Chem 25:5468–5476. https://doi.org/10.1016/J.BMC.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  39. Gao C, Chang L, Xu Z, Yan XF, Ding C, Zhao F, Wu X, Feng LS (2019) Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur J Med Chem 163:404–412. https://doi.org/10.1016/J.EJMECH.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  40. Frija LMT, Rocha BGM, Kuznetsov ML, Cabral LIL, Cristiano MLS, Pombeiro AJL (2020) Well-defined nickel(II) tetrazole-saccharinate complex as homogeneous catalyst on the reduction of aldehydes: scope and reaction mechanism, pure and applied. Chemistry 92:151–166. https://doi.org/10.1515/PAC-2019-0220

    Article  CAS  Google Scholar 

  41. Allab Y, Chikhi S, Zaater S, Brahimi M, Djebbar S (2020) Impact of the functionalized tetrazole ring on the electrochemical behavior and biological activities of novel nickel (II) complexes with a series of tetrazole derivatives. Inorganica Chim Acta 504:119436. https://doi.org/10.1016/J.ICA.2020.119436

    Article  CAS  Google Scholar 

  42. Surendra Babu MS, Rao BU, Krishna V, Mustafa S, Rao GN (2017) Synthesis, characterization and DNA cleavage studies of isomeric pyridyl-tetrazole ligands and their Ni(II) and Zn(II) complexes. J Saudi Chem Soc 21:291–299. https://doi.org/10.1016/J.JSCS.2015.07.003

    Article  CAS  Google Scholar 

  43. Ermakova EA, Golubeva JA, Smirnova KS, Klyushova LS, Eltsov IV, Zubenko AA, Fetisov LN, Svyatogorova AE, Lider EV (2023) Bioactive mixed-ligand zinc(II) complexes with 1H-tetrazole-5-acetic acid and oligopyridine derivatives. Polyhedron 230:116213. https://doi.org/10.1016/J.POLY.2022.116213

    Article  CAS  Google Scholar 

  44. Ermakova EA, Golubeva YA, Smirnova KS, Klyushova LS, Berezin AS, Fetisov LN, Svyatogorova AE, Andros NO, Zubenko AA, Lider EV (2023) Cytotoxic mixed-ligand copper(II) complexes with 1H-tetrazole-5-acetic acid and oligopyridine derivatives. New J Chem 47:9472–9482. https://doi.org/10.1039/D3NJ00568B

    Article  CAS  Google Scholar 

  45. APEX2, ver. 2.0; SAINT, ver. 8.18c; SADABS ver. 2.11; Bruker Advanced X-ray Solutions. Madison, Wisconsin, USA, 2000−2012, (n.d.).

  46. Sheldrick GM (2015) SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr A 71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  ADS  Google Scholar 

  47. Sheldrick GM (2015) Crystal structure refinement with SHELXL, Acta Crystallogr C. Struct Chem 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  48. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: A complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  ADS  Google Scholar 

  49. Eremina JA, Ermakova EA, Smirnova KS, Klyushova LS, Berezin AS, Sukhikh TS, Zubenko AA, Fetisov LN, Kononenko KN, Lider EV (2021) Cu(II), Co(II), Mn(II) complexes with 5-phenyltetrazole and polypyridyl ligands: Synthesis, characterization and evaluation of the cytotoxicity and antimicrobial activity. Polyhedron 206:115352. https://doi.org/10.1016/J.POLY.2021.115352

    Article  CAS  Google Scholar 

  50. Ermakova EA, Eremina JA, Smirnova KS, Klyushova LS, D.B. Kal’nyi, T.S. Sukhikh, A.A. Zubenko, L.N. Fetisov, K.N. Kononenko, E. V. Lider, (2021) Mixed-ligand manganese(II) complexes with 5-phenyltetrazole and polypyridine derivatives: Synthesis, crystal structures and biological activity. Results Chem. 3:100239. https://doi.org/10.1016/J.RECHEM.2021.100239

    Article  CAS  Google Scholar 

  51. Eremina JA, Lider EV, Kuratieva NV, Samsonenko DG, Klyushova LS, D.G. Sheven’, R.E. Trifonov, V.A. Ostrovskii, (2021) Synthesis and crystal structures of cytotoxic mixed-ligand copper(II) complexes with alkyl tetrazole and polypyridine derivatives. Inorganica Chim Acta. 516:120169. https://doi.org/10.1016/J.ICA.2020.120169

    Article  CAS  Google Scholar 

  52. Ali I, Wani WA, Saleem K (2013) Empirical formulae to molecular structures of metal complexes by molar conductance. Synth React Inorg Met-Org Nano-Met Chem 43:1162–1170. https://doi.org/10.1080/15533174.2012.756898

    Article  CAS  Google Scholar 

  53. Meenongwa A, Brissos RF, Soikum C, Chaveerach P, Gamez P, Trongpanich Y, Chaveerach U (2016) Effects of N, N-heterocyclic ligands on the in vitro cytotoxicity and DNA interactions of copper(II) chloride complexes from amidino-O-methylurea ligands. New J Chem 40:586

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Anna P. Zubareva and Natalia N. Komardina for the elemental analysis, Aleksandra A. Shapovalova for IR spectroscopy, Anastasia O. Matveeva and Ilya V. Korolkov for the powder X-ray analysis data, and Vasiliy N. Yudin for providing the data collected in the XRD Facility of NIIC SB RAS. The research (Nikolaev Institute of Inorganic Chemistry SB RAS) was supported by the Ministry of Science and Higher Education of the Russian Federation, No. 121031700321-3. The work was performed using the equipment of the Center for Collective Use "Proteomic Analysis," supported by funding from the Ministry of Science and Higher Education of the Russian Federation (agreement No. 075-15-2021-691).

Funding

This work was supported by the Russian Science Foundation (Project no. 20–73-10207).

Author information

Authors and Affiliations

Authors

Contributions

E.A.E. wrote the main manuscript text, investigation, visualization Yu.A.G.: investigation, review and editing of the manuscript K.S.S.: investigation, visualization, wrote description of crystal structures L.S.K.: investigation in vitro cytotoxicity study, visualization D.G.Sh.: investigation by mass spectrometry E.V.L.: review and editing of the manuscript, conceptualization, supervision

Corresponding author

Correspondence to Elizaveta V. Lider.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakova, E.A., Golubeva, Y.A., Smirnova, K.S. et al. Synthesis, structural characterization, and cytotoxicity of nickel(II) complexes with 1H-tetrazole-5-acetic acid and oligopyridines. Transit Met Chem (2024). https://doi.org/10.1007/s11243-024-00573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11243-024-00573-y

Navigation