Skip to main content
Log in

Congo red decomposition by photocatalytic formation of hydroxyl radicals (·OH) using titanium metal–organic frameworks

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

In this work, two well-known titanium-type metal–organic framework (MOF) solids named MIL-125 and MIL-125-NH2 were successfully synthesized using a solvothermal method. The structure of the catalytic materials was confirmed by X-ray powder diffraction, infrared spectroscopy, N2 adsorption–desorption measurements, thermogravimetric analysis and UV–Vis diffuse reflectance spectroscopy analysis. An azo dye, Congo red, was used as model pollutant to study its photocatalytic activity under UV–Vis light irradiation. A comparison with the commercial TiO2 P-25 revealed both the beneficial effect of the porous structure of MOFs and the influence of the –NH2 group on the light activation process. Formation of hydroxyl radicals (·OH) by catalysts was evaluated by luminol degradation probing. Finally, the titanium MOF catalysts can be recycled and reused without significant loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rawat D, Mishra V, Sharma RS (2016) Detoxification of azo dyes in the context of environmental processes. Chemosphere 155:591–605. https://doi.org/10.1016/J.CHEMOSPHERE.2016.04.068

    Article  CAS  Google Scholar 

  2. Kant R (2012) Textile dyeing industry an environmental hazard. Nat Sci 04:22–26. https://doi.org/10.4236/ns.2012.41004

    Article  CAS  Google Scholar 

  3. Erdemoğlu S, Aksu SK, Sayılkan F et al (2008) Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC–MS. J Hazard Mater 155:469–476. https://doi.org/10.1016/J.JHAZMAT.2007.11.087

    Article  PubMed  Google Scholar 

  4. Saini RD (2017) Textile organic dyes: polluting effects and elimination methods from textile waste water. Int J Chem Eng Res 9:975–6442

    Google Scholar 

  5. Brüschweiler BJ, Merlot C (2017) Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regul Toxicol Pharmacol 88:214–226. https://doi.org/10.1016/J.YRTPH.2017.06.012

    Article  PubMed  Google Scholar 

  6. Stingley RL, Zou W, Heinze TM et al (2010) Metabolism of azo dyes by human skin microbiota. J Med Microbiol 59:108–114. https://doi.org/10.1099/jmm.0.012617-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Das R, Bhaumik M, Giri S, Maity A (2017) Sonocatalytic rapid degradation of Congo red dye from aqueous solution using magnetic Fe0/polyaniline nanofibers. Ultrason Sonochem 37:600–613. https://doi.org/10.1016/J.ULTSONCH.2017.02.022

    Article  CAS  PubMed  Google Scholar 

  8. Ning X, Yang C, Wang Y et al (2014) Decolorization and biodegradation of the azo dye Congo red by an isolated Acinetobacter baumannii YNWH 226. Biotechnol Bioprocess Eng 19:687–695. https://doi.org/10.1007/s12257-013-0729-y

    Article  CAS  Google Scholar 

  9. Yuan G-E, Li Y, Lv J et al (2017) Integration of microbial fuel cell and catalytic oxidation reactor with iron phthalocyanine catalyst for Congo red degradation. Biochem Eng J 120:118–124. https://doi.org/10.1016/J.BEJ.2017.01.005

    Article  CAS  Google Scholar 

  10. Srilakshmi C, Saraf R (2016) Ag-doped hydroxyapatite as efficient adsorbent for removal of Congo red dye from aqueous solution: synthesis, kinetic and equilibrium adsorption isotherm analysis. Microporous Mesoporous Mater 219:134–144. https://doi.org/10.1016/J.MICROMESO.2015.08.003

    Article  CAS  Google Scholar 

  11. Kim S-H, Choi P-P (2017) Enhanced Congo red dye removal from aqueous solutions using iron nanoparticles: adsorption, kinetics, and equilibrium studies. Dalton Trans 46:15470–15479. https://doi.org/10.1039/C7DT02076G

    Article  CAS  PubMed  Google Scholar 

  12. Grassian VH (2005) Environmental catalysis. Taylor & Francis, Milton Park

    Book  Google Scholar 

  13. Rothenberg G (2017) Catalysis: concepts and green applications. Wiley, Incorporated

    Google Scholar 

  14. Corma A, García H, Llabrés i Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655. https://doi.org/10.1021/cr9003924

    Article  CAS  PubMed  Google Scholar 

  15. Kuppler RJ, Timmons DJ, Fang Q-R et al (2009) Potential applications of metal–organic frameworks. Coord Chem Rev 253:3042–3066. https://doi.org/10.1016/J.CCR.2009.05.019

    Article  CAS  Google Scholar 

  16. Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14. https://doi.org/10.1016/J.MICROMESO.2004.03.034

    Article  CAS  Google Scholar 

  17. Gangu KK, Maddila S, Mukkamala SB, Jonnalagadda SB (2016) A review on contemporary metal–organic framework materials. Inorg Chim Acta 446:61–74. https://doi.org/10.1016/J.ICA.2016.02.062

    Article  CAS  Google Scholar 

  18. Wang F, Wang C, Yu Z et al (2016) Two multifunctional Mn(II) metal–organic frameworks: synthesis, structures and applications as photocatalysis and luminescent sensor. Polyhedron 105:49–55. https://doi.org/10.1016/J.POLY.2015.11.043

    Article  CAS  Google Scholar 

  19. Czaja AU, Trukhan N, Müller U (2009) Industrial applications of metal–organic frameworks. Chem Soc Rev 38:1284. https://doi.org/10.1039/b804680h

    Article  CAS  PubMed  Google Scholar 

  20. de Miguel M, Ragon F, Devic T et al (2012) Evidence of photoinduced charge separation in the metal–organic framework MIL-125(Ti)–NH 2. ChemPhysChem 13:3651–3654. https://doi.org/10.1002/cphc.201200411

    Article  CAS  PubMed  Google Scholar 

  21. Alvaro M, Carbonell E, Ferrer B et al (2007) Semiconductor behavior of a metal–organic framework (MOF). Chem A Eur J 13:5106–5112. https://doi.org/10.1002/chem.200601003

    Article  CAS  Google Scholar 

  22. Passalacqua R, Perathoner S, Centi G (2017) Semiconductor, molecular and hybrid systems for photoelectrochemical solar fuel production. J Energy Chem 26:219–240. https://doi.org/10.1016/J.JECHEM.2017.03.004

    Article  Google Scholar 

  23. Wen M, Mori K, Kuwahara Y et al (2017) Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Appl Catal B Environ 218:555–569. https://doi.org/10.1016/J.APCATB.2017.06.082

    Article  CAS  Google Scholar 

  24. Kumar P, Vellingiri K, Kim K-H et al (2017) Modern progress in metal–organic frameworks and their composites for diverse applications. Microporous Mesoporous Mater 253:251–265. https://doi.org/10.1016/J.MICROMESO.2017.07.003

    Article  CAS  Google Scholar 

  25. Zhu J, Maza WA, Morris AJ (2017) Light-harvesting and energy transfer in ruthenium(II)-polypyridyl doped zirconium(IV) metal–organic frameworks: a look toward solar cell applications. J Photochem Photobiol A Chem 344:64–77. https://doi.org/10.1016/J.JPHOTOCHEM.2017.04.025

    Article  CAS  Google Scholar 

  26. Su Y, Zhang Z, Liu H, Wang Y (2017) Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl Catal B Environ 200:448–457. https://doi.org/10.1016/J.APCATB.2016.07.032

    Article  CAS  Google Scholar 

  27. Cui J-W, Hou S-X, Li Y-H, Cui G-H (2017) A multifunctional Ni(ii) coordination polymer: synthesis, crystal structure and applications as a luminescent sensor, electrochemical probe, and photocatalyst. Dalton Trans 46:16911–16924. https://doi.org/10.1039/C7DT03874G

    Article  CAS  PubMed  Google Scholar 

  28. Kang W-C, Li Y-H, Qin Z-B, Cui G-H (2018) Synthesis, structures and characterization of two cobalt(II) coordination polymers with 2,5-dichloroterephthalic acid and flexible bis(benzimidazole) ligands. Transit Met Chem. https://doi.org/10.1007/s11243-018-0242-4

    Article  Google Scholar 

  29. Li J-X, Qin Z-B, Li Y-H, Cui G-H (2018) Sonochemical synthesis and properties of two new nanostructured silver(I) coordination polymers. Ultrason Sonochem 48:127–135. https://doi.org/10.1016/J.ULTSONCH.2018.05.016

    Article  CAS  PubMed  Google Scholar 

  30. Du J-J, Yuan Y-P, Sun J-X et al (2011) New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. J Hazard Mater 190:945–951. https://doi.org/10.1016/J.JHAZMAT.2011.04.029

    Article  CAS  PubMed  Google Scholar 

  31. Zhao H, Xia Q, Xing H et al (2017) Construction of pillared-layer MOF as efficient visible-light photocatalysts for aqueous Cr(VI) reduction and dye degradation. ACS Sustain Chem Eng 5:4449–4456. https://doi.org/10.1021/acssuschemeng.7b00641

    Article  CAS  Google Scholar 

  32. Guesh K, Caiuby CAD, Mayoral Á et al (2017) Sustainable preparation of MIL-100(Fe) and its photocatalytic behavior in the degradation of methyl orange in water. Cryst Growth Des 17:1806–1813. https://doi.org/10.1021/acs.cgd.6b01776

    Article  CAS  Google Scholar 

  33. Zhu J, Li P-Z, Guo W et al (2018) Titanium-based metal–organic frameworks for photocatalytic applications. Coord Chem Rev 359:80–101. https://doi.org/10.1016/J.CCR.2017.12.013

    Article  CAS  Google Scholar 

  34. Alver E, Bulut M, Metin AÜ, Çiftçi H (2017) One step effective removal of Congo Red in chitosan nanoparticles by encapsulation. Spectrochim Acta Part A Mol Biomol Spectrosc 171:132–138. https://doi.org/10.1016/J.SAA.2016.07.046

    Article  CAS  Google Scholar 

  35. Ma C, Wang F, Zhang C et al (2017) Photocatalytic decomposition of Congo red under visible light irradiation using MgZnCr–TiO2 layered double hydroxide. Chemosphere 168:80–90. https://doi.org/10.1016/J.CHEMOSPHERE.2016.10.063

    Article  CAS  PubMed  Google Scholar 

  36. Wang H, Yuan X, Wu Y et al (2015) Facile synthesis of amino-functionalized titanium metal–organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction. J Hazard Mater 286:187–194. https://doi.org/10.1016/J.JHAZMAT.2014.11.039

    Article  CAS  PubMed  Google Scholar 

  37. Lowell S, Lowell S (2004) Characterization of porous solids and powders: surface area, pore size, and density. Kluwer Academic Publishers, Berlin

    Book  Google Scholar 

  38. Thommes M, Cychosz KA (2014) Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption 20:233–250. https://doi.org/10.1007/s10450-014-9606-z

    Article  CAS  Google Scholar 

  39. Thommes M (2016) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Chem Int 38:25. https://doi.org/10.1515/ci-2016-0119

    Article  Google Scholar 

  40. Vargas WE, Niklasson GA (1997) Applicability conditions of the Kubelka–Munk theory. Appl Opt 36:5580. https://doi.org/10.1364/AO.36.005580

    Article  CAS  PubMed  Google Scholar 

  41. Essick JM, Mather RT (1993) Characterization of a bulk semiconductor’s band gap via a near-absorption edge optical transmission experiment. Am J Phys 61:646–649. https://doi.org/10.1119/1.17173

    Article  Google Scholar 

  42. Vermoortele F, Maes M, Moghadam PZ et al (2011) P-xylene-selective metal–organic frameworks: a case of topology-directed selectivity. J Am Chem Soc 133:18526–18529. https://doi.org/10.1021/ja207287h

    Article  CAS  PubMed  Google Scholar 

  43. Dan-Hardi M, Serre C, Frot T et al (2009) A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J Am Chem Soc 131:10857–10859. https://doi.org/10.1021/ja903726m

    Article  CAS  PubMed  Google Scholar 

  44. Fu Y, Sun D, Chen Y et al (2012) An amine-functionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chemie Int Ed 51:3364–3367. https://doi.org/10.1002/anie.201108357

    Article  CAS  Google Scholar 

  45. Hatchard CG, Parker CA (1956) A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proc R Soc A Math Phys Eng Sci 235:518–536. https://doi.org/10.1098/rspa.1956.0102

    Article  CAS  Google Scholar 

  46. Harris GD, Dean Adams V, Moore WM, Sorensen DL (1987) Potassium ferrioxalate as chemical actinometer in ultraviolet reactors. J Environ Eng 113:612–627. https://doi.org/10.1061/(ASCE)0733-9372(1987)113:3(612)

    Article  CAS  Google Scholar 

  47. Hirakawa T, Nosaka Y (2002) Properties of O ·−2 and OH· formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18:3247–3254. https://doi.org/10.1021/la015685a

    Article  CAS  Google Scholar 

  48. Granados-Oliveros G, Páez-Mozo EA, Ortega FM et al (2009) Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Appl Catal B Environ 89:448–454. https://doi.org/10.1016/J.APCATB.2009.01.001

    Article  CAS  Google Scholar 

  49. Szychliński J, Bilski P, Martuszewski K, Blażejowski J (1989) Complementary study on the use of the potassium Reinecke’s salt as a chemical actinometer. Analyst 114:739–741. https://doi.org/10.1039/AN9891400739

    Article  Google Scholar 

  50. McKinstry C, Cathcart RJ, Cussen EJ et al (2016) Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chem Eng J 285:718–725. https://doi.org/10.1016/J.CEJ.2015.10.023

    Article  CAS  Google Scholar 

  51. Bellamy L (1963) Infrared spectra of complex Molecules. Springer, Netherlands

    Google Scholar 

  52. Gomes Silva C, Luz I, Llabrés i Xamena FX et al (2010) Water stable Zr-Benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chem A Eur J 16:11133–11138. https://doi.org/10.1002/chem.200903526

    Article  CAS  Google Scholar 

  53. Yang L, Kruse B (2004) Revised Kubelka–Munk theory I theory and application. J Opt Soc Am A 21:1933. https://doi.org/10.1364/JOSAA.21.001933

    Article  Google Scholar 

  54. Nowak M, Kauch B, Szperlich P (2009) Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev Sci Instrum 80:046107. https://doi.org/10.1063/1.3103603

    Article  CAS  PubMed  Google Scholar 

  55. Jahan F, Islam MH, Smith BE (1995) Band gap and refractive index determination of Mo-black coatings using several techniques. Sol Energy Mater Sol Cells 37:283–293. https://doi.org/10.1016/0927-0248(95)00021-6

    Article  CAS  Google Scholar 

  56. Lin H, Huang CP, Li W et al (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B Environ 68:1–11. https://doi.org/10.1016/J.APCATB.2006.07.018

    Article  CAS  Google Scholar 

  57. Ghosal R, Smith DM (1996) Micropore characterization using the Dubinin–Astakhov equation to analyze high pressure CO2 (273 K) adsorption data. J Porous Mater 3:247–255. https://doi.org/10.1007/BF01137914

    Article  CAS  Google Scholar 

  58. Gil A, Grange P (1996) Application of the Dubinin–Radushkevich and Dubinin–Astakhov equations in the characterization of microporous solids. Colloids Surf A Physicochem Eng Asp 113:39–50. https://doi.org/10.1016/0927-7757(96)81455-5

    Article  CAS  Google Scholar 

  59. Navarro Amador R, Carboni M, Meyer D (2016) Photosensitive titanium and zirconium metal organic frameworks: current research and future possibilities. Mater Lett 166:327–338. https://doi.org/10.1016/J.MATLET.2015.12.023

    Article  CAS  Google Scholar 

  60. Li Y, Li X, Li J, Yin J (2006) Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res 40:1119–1126. https://doi.org/10.1016/J.WATRES.2005.12.042

    Article  CAS  Google Scholar 

  61. Huang Y-B, Liang J, Wang X-S, Cao R (2017) Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chem Soc Rev 46:126–157. https://doi.org/10.1039/C6CS00250A

    Article  CAS  PubMed  Google Scholar 

  62. Izumi I, Fan F-RF, Bard AJ (1981) Heterogeneous photocatalytic decomposition of benzoic acid and adipic acid on platinized titanium dioxide powder. The photo-Kolbe decarboxylative route to the breakdown of the benzene ring and to the production of butane. J Phys Chem 85:218–223. https://doi.org/10.1021/j150603a002

    Article  CAS  Google Scholar 

  63. Wei T-Y, Wan C (1992) Kinetics of photocatalytic oxidation of phenol on TiO2 surface. J Photochem Photobiol A Chem 69:241–249. https://doi.org/10.1016/1010-6030(92)85284-2

    Article  CAS  Google Scholar 

  64. Pichat P, Guillard C, Amalric L et al (1995) Assessment of the importance of the role of H2O2 and O2o − in the photocatalytic degradation of 1,2-dimethoxybenzene. Sol Energy Mater Sol Cells 38:391–399. https://doi.org/10.1016/0927-0248(94)00231-2

    Article  CAS  Google Scholar 

  65. Granados-Oliveros G, Torres E, Zambrano M et al (2018) Formation of hydroxyl radicals by α-Fe2O3 microcrystals and its role in photodegradation of 2,4-dinitrophenol and lipid peroxidation. Res Chem Intermed 44:3407–3424. https://doi.org/10.1007/s11164-018-3315-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Universidad Nacional de Colombia (Project code QUIPU 2010100-27992). Z.M.R. is grateful to COLCIENCIAS “Programa Jovenes Investigadores-2015” and the Faculty of Sciences of Universidad Nacional de Colombia by the internal Projects code 31000 and 37526.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson J. Castellanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellanos, N.J., Martinez Rojas, Z., Camargo, H.A. et al. Congo red decomposition by photocatalytic formation of hydroxyl radicals (·OH) using titanium metal–organic frameworks. Transit Met Chem 44, 77–87 (2019). https://doi.org/10.1007/s11243-018-0271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0271-z

Navigation