Skip to main content
Log in

Synthesis, characterization and X-ray crystal structure of an iron(III) complex of a tripodal pyridoxal Schiff base ligand: effects of positional disorder on its magnetic properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The synthesis and characterization of fac-{tris[(E)-5-(hydroxymethyl)-2-methyl-4-((methylimino-κN)methyl)pyridin-3-olato-κO]amine}iron(III) 7.5-hydrate is described, together with its crystal structure at 95 K. The FeIII ion is six-coordinated in a trigonally distorted octahedral configuration with the hexadentate tripodal pyridoxal Schiff base ligand. A positional disorder of the pyridoxal hydroxymethyl group is identified, which partly undergoes a cyclization forming a five-membered ring with the imine moiety. The two configurations occur in the ratio 79.5:20.5. In the crystal, the hydrogen bonds and ππ stacking interactions expand the mononuclear units into 2D sheets which are further stabilized by a system of hydrogen bonds to the 3D supramolecular network. The magnetic susceptibility data and EPR measurements indicate that the octahedral Fe(III) centers exist as a mixture of low- and high-spin forms within the temperature range 2–300 K. The presence of a mixture of the majority high-spin and the minority low-spin components showing a spin transition is proposed. The effect of zero-field splitting on magnetic properties is discussed. EPR spectra at X-band display signals of a high-spin Fe(III) complex of the rhombohedral symmetry with the zero-field splitting parameters E/D ratio approximately 1/3, along with the signals of a low-spin Fe(III) complex. Temperature dependence of the EPR spectra revealed a bend temperature T ≈ 88 K attributed to spin transition of the minority Fe(III) centers. The thermal stability of the compound was investigated by (TG, DTG, DTA) techniques.

Graphical Abstract

New iron(III) complex with tripodal pyridoxal Schiff base ligand was prepared. Single-crystal XRD data revealed a positional disorder of a side hydroxymethyl group. The magnetic data were analysed using the spin Hamiltonian including the ZFS term. EPR measurements at X-band confirmed magnetic anisotropy of the complex. Thermal stability of the complex was investigated by (TG, DTG, DTA) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Metzler DE, Snell EE (1952) Some transamination reactions involving Vitamin B 16 . J Am Chem Soc 74:979–983. https://doi.org/10.1021/ja01124a033

    Article  CAS  Google Scholar 

  2. Christensen HN (1957) Metal chelates of pyridoxylidene amino acids. J Am Chem Soc 79:4073–4078

    Article  CAS  Google Scholar 

  3. Heinert D, Martell AE (1963) Pyridoxine and pyridoxal analogs. VIII. Synthesis and infrared spectra of metal chelates. J Am Chem Soc 85:1334–1337

    Article  CAS  Google Scholar 

  4. Henderson W, Koh L, Ranford J, Robinson W, Svensson J, Vittal J, Wang Y, Xu Y (1999) Clusters in bis-tridentate tethered domains of an iron chelating drug [dagger]. J Chem Soc Dalton Trans 19:3341–3343. https://doi.org/10.1039/A904728J

    Article  Google Scholar 

  5. Pishchugin FV, Tuleberdiev IT (2010) Effect of structure of the amino acids and amines on the rate and mechanism of their condensations with pyridoxal. Russ J Gener Chem 80:1836–1840. https://doi.org/10.1134/s1070363210090203

    Article  CAS  Google Scholar 

  6. Back DF, Manzoni de Oliveira G, Schulz Lang E, Vargas JP (2008) Assembly of new Schiff base ligands derived from vitamin B6 and stabilization through complexation of N, N′-bis-(pyridoxylideneimine)-o-phenylene: synthesis and X-ray structural features of pyridoxal/o-phenylenediamine adducts and of [UO2(H2pyr2phen)Cl]NO3. Polyhedron 27:2551–2556. https://doi.org/10.1016/j.poly.2008.05.006

    Article  CAS  Google Scholar 

  7. Dutta Banik S, Chandra A (2014) A hybrid QM/MM simulation study of intramolecular proton transfer in the pyridoxal 5′-phosphate in the active site of transaminase: influence of active site interaction on proton transfer. J Phys Chem B 118:11077–11089. https://doi.org/10.1021/jp506196m

    Article  CAS  PubMed  Google Scholar 

  8. Casasnovas R, Frau J, Ortega-Castro J, Donoso J, Muñoz F (2013) C–H activation in pyridoxal-5′-phosphate and pyridoxamine-5′-phosphate Schiff bases: effect of metal chelation. A computational study. J Phys Chem B 117:2339–2347. https://doi.org/10.1021/jp311861p

    Article  CAS  PubMed  Google Scholar 

  9. Casas JS, Couce MD, Sordo J (2012) Coordination chemistry of vitamin B6 and derivatives: a structural overview. Coord Chem Rev 256:3036–3062. https://doi.org/10.1016/j.ccr.2012.07.001

    Article  CAS  Google Scholar 

  10. Pandiarajan D, Ramesh R (2012) Suzuki–Miyaura cross-coupling reaction of aryl bromides catalyzed by palladium(II) pyridoxal hydrazone complexes. J Organomet Chem 708–709:18–24. https://doi.org/10.1016/j.jorganchem.2012.02.010

    Article  CAS  Google Scholar 

  11. Manikandan R, Anitha P, Prakash G, Vijayan P, Viswanathamurthi P, Butcher RJ, Malecki JG (2015) Ruthenium(II) carbonyl complexes containing pyridoxal thiosemicarbazone and trans-bis(triphenylphosphine/arsine): synthesis, structure and their recyclable catalysis of nitriles to amides and synthesis of imidazolines. J Mol Catal A: Chem 398:312–324. https://doi.org/10.1016/j.molcata.2014.12.017

    Article  CAS  Google Scholar 

  12. Miodrag GJ, Nebojša ZR, Branka BH, Mirjana ML, Miloš PS, Miloš BŽ (2014) Photoluminescence study of cobalt (III) and copper (II) complexes with the Schiff base of pyridoxal and aminoguanidine. Phys Scr 2014:14010

    Google Scholar 

  13. Rosu T, Pahontu E, Reka-Stefana M, Ilies D-C, Georgescu R, Shova S, Gulea A (2012) Synthesis, structural and spectral studies of Cu(II) and V(IV) complexes of a novel Schiff base derived from pyridoxal. Antimicrobial activity. Polyhedron 31:352–360. https://doi.org/10.1016/j.poly.2011.09.044

    Article  CAS  Google Scholar 

  14. Iqbal MS, Khan AH, Loothar BA, Bukhari IH (2009) Effect of derivatization of sulfamethoxazole and trimethoprim with copper and zinc on their medicinal value. Med Chem Res 18:31–42. https://doi.org/10.1007/s00044-008-9104-5

    Article  CAS  Google Scholar 

  15. Naskar S, Naskar S, Figgie HM, Sheldrick WS, Chattopadhyay SK (2010) Synthesis, crystal structures and spectroscopic properties of two Zn(II) Schiff’s base complexes of pyridoxal. Polyhedron 29:493–499. https://doi.org/10.1016/j.poly.2009.06.040

    Article  CAS  Google Scholar 

  16. Baker E, Richardson D, Gross S, Ponka P (1992) Evaluation of the iron chelation potential of hydrazones of pyridoxal, salicylaldehyde and 2-hydroxy-1-naphthylaldehyde using the hepatocyte in culture. Hepatology 15:492–501. https://doi.org/10.1002/hep.1840150323

    Article  CAS  PubMed  Google Scholar 

  17. Gao J, Richardson DR (2001) The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, IV: the mechanisms involved in inhibiting cell-cycle progression. Blood 98:842–850

    Article  CAS  PubMed  Google Scholar 

  18. Kalinowski DS, Sharpe PC, Bernhardt PV, Richardson DR (2007) Design, synthesis, and characterization of new iron chelators with anti-proliferative activity: structure − activity relationships of novel thiohydrazone analogues. J Med Chem 50:6212–6225. https://doi.org/10.1021/jm070839q

    Article  CAS  PubMed  Google Scholar 

  19. Yemeli Tido EW, Vertelman EJM, Meetsma A, van Koningsbruggen PJ (2007) Crystal structure and magnetic behaviour of a five-coordinate iron(III) complex of pyridoxal-4-methylthiosemicarbazone. Inorg Chim Acta 360:3896–3902. https://doi.org/10.1016/j.ica.2007.03.045

    Article  CAS  Google Scholar 

  20. Yemeli Tido EW, Alberda van Ekenstein GOR, Meetsma A, van Koningsbruggen PJ (2008) Study of neutral Fe(III) complexes of pyridoxal-N-substituted thiosemicarbazone with desolvation-induced spin-state transformation above room temperature. Inorg Chem 47:143–153. https://doi.org/10.1021/ic701695b

    Article  CAS  Google Scholar 

  21. Tido EWY, Faulmann C, Roswanda R, Meetsma A, van Koningsbruggen PJ (2010) Tuning of the charge in octahedral ferric complexes based on pyridoxal-N-substituted thiosemicarbazone ligands. Dalton Trans 39:1643–1651. https://doi.org/10.1039/B911114J

    Article  CAS  PubMed  Google Scholar 

  22. Said HM, Ortiz A, Ma TY (2003) A carrier-mediated mechanism for pyridoxine uptake by human intestinal epithelial Caco-2 cells: regulation by a PKA-mediated pathway. Am J Physiol Cell Physiol 285:C1219

    Article  CAS  PubMed  Google Scholar 

  23. Banerjee S, Dixit A, Shridharan RN, Karande AA, Chakravarty AR (2014) Endoplasmic reticulum targeted chemotherapeutics: the remarkable photo-cytotoxicity of an oxovanadium(iv) vitamin-B6 complex in visible light. Chem Commun 50:5590–5592. https://doi.org/10.1039/C4CC02093F

    Article  CAS  Google Scholar 

  24. Sarkar T, Banerjee S, Hussain A (2015) Significant photocytotoxic effect of an iron(iii) complex of a Schiff base ligand derived from vitamin B6 and thiosemicarbazide in visible light. RSC Adv 5:29276–29284. https://doi.org/10.1039/C5RA04207K

    Article  CAS  Google Scholar 

  25. Basu U, Pant I, Hussain A, Kondaiah P, Chakravarty AR (2015) Iron(III) complexes of a pyridoxal Schiff base for enhanced cellular uptake with selectivity and remarkable photocytotoxicity. Inorg Chem 54:3748–3758. https://doi.org/10.1021/ic5027625

    Article  CAS  PubMed  Google Scholar 

  26. Wani WA, Baig U, Shreaz S, Shiekh RA, Iqbal PF, Jameel E, Ahmad A, Mohd-Setapar SH, Mushtaque M, Ting Hun L (2016) Recent advances in iron complexes as potential anticancer agents. New J Chem 40:1063–1090. https://doi.org/10.1039/C5NJ01449B

    Article  CAS  Google Scholar 

  27. Kuźnik N, Szafraniec-Gorol G, Oczek L, Grucela A, Jewuła P, Kuźnik A, Zassowski P, Domagala W (2014) A study on the synthesis and properties of substituted EHBG-Fe(III) complexes as potential MRI contrast agents. J Organomet Chem 769:100–105. https://doi.org/10.1016/j.jorganchem.2014.07.011

    Article  CAS  Google Scholar 

  28. Mossin S, Tran BL, Adhikari D, Pink M, Heinemann FW, Sutter J, Szilagyi RK, Meyer K, Mindiola DJ (2012) A mononuclear Fe(III) single molecule magnet with a 3/2⟷5/2 spin crossover. J Am Chem Soc 134:13651–13661. https://doi.org/10.1021/ja302660k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martell Arthur E (1968) Catalytic effects of metal chelate compounds. Pure Appl Chem 17:129

    Google Scholar 

  30. Mukherjee A, Dhar S, Nethaji M, Chakravarty AR (2005) Ternary iron(II) complex with an emissive imidazopyridine arm from Schiff base cyclizations and its oxidative DNA cleavage activity. Dalton Trans 2:349. https://doi.org/10.1039/b415864d

    Article  CAS  Google Scholar 

  31. Kumar A, Kumar D (2008) Synthesis and antimicrobial activity of some metal complexes derived from 2-(27′-hydroxyphenyl)benzoxazole. Asian J Chem 20:1588

    CAS  Google Scholar 

  32. Lehnert N, Ho RYN, Que L, Solomon EI (2001) Electronic structure of high-spin iron(III) − alkylperoxo complexes and its relation to low-spin analogues: reaction coordinate of O − O bond homolysis. J Am Chem Soc 123:12802–12816. https://doi.org/10.1021/ja011450+

    Article  CAS  PubMed  Google Scholar 

  33. Hayami S, Matoba T, Nomiyama S, Kojima T, Osaki S, Maeda Y (1997) Structures and magnetic properties of some Fe(III) complexes with hexadentate ligands: in connection with spin-crossover behavior. Bull Chem Soc Jpn 70:3001–3009. https://doi.org/10.1246/bcsj.70.3001

    Article  CAS  Google Scholar 

  34. Sharpe AG, Housecroft C (2012) Inorganic chemistry. Pearson Education, New York

    Google Scholar 

  35. Cotton FA, Herrero S, Jiménez-Aparicio R, Murillo CA, Urbanos FA, Villagrán D, Wang X (2007) How small variations in crystal interactions affect macroscopic properties. J Am Chem Soc 129:12666–12667. https://doi.org/10.1021/ja075808z

    Article  CAS  PubMed  Google Scholar 

  36. Jana S, Bhattacharyya A, Ghosh BN, Rissanen K, Herrero S, Jiménez-Aparicio R, Chattopadhyay S (2016) Synthesis, characterization and magnetic study of two new octahedral iron(III) complexes with pendant zwitterionic Schiff bases. Inorg Chim Acta 453:715–723. https://doi.org/10.1016/j.ica.2016.09.005

    Article  CAS  Google Scholar 

  37. Phonsri W, Harding P, Liu L, Telfer SG, Murray KS, Moubaraki B, Ross TM, Jameson GNL, Harding DJ (2017) Solvent modified spin crossover in an iron(iii) complex: phase changes and an exceptionally wide hysteresis. Chem Sci 8:3949–3959. https://doi.org/10.1039/C6SC05317C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boča R (2004) Zero-field splitting in metal complexes. Coord Chem Rev 248:757–815. https://doi.org/10.1016/j.ccr.2004.03.001

    Article  CAS  Google Scholar 

  39. Boča R (2012) A handbook of magnetochemical formulae. Elsevier, Amsterdam

    Google Scholar 

  40. Atkins PW, De Paula J (2014) Atkins’ physical chemistry, 10th edn. Oxford University Press, Oxford

    Google Scholar 

  41. Pilbrow JR (1990) Transition ion electron paramagnetic resonance. Clarendon Press, Oxford. ISBN 0-19-855214-9

    Google Scholar 

  42. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55. https://doi.org/10.1016/j.jmr.2005.08.013

    Article  CAS  PubMed  Google Scholar 

  43. Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon Press, Oxford

    Google Scholar 

  44. Fallon GD, McLachlan GA, Moubaraki B, Murray KS, O’Brien L, Spiccia L (1997) Mononuclear chromium(III), manganese(II) and iron(III) complexes of the pentadentate ligand 1,4-bis(2-pyridylmethyl)-1,4,7-triazacyclononane. J Chem Soc, Dalton Trans. https://doi.org/10.1039/A700756F

    Article  Google Scholar 

  45. Gütlich P, Gaspar AB, Garcia Y (2013) Spin state switching in iron coordination compounds. Beilstein J Org Chem 9:342–391. https://doi.org/10.3762/bjoc.9.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nihei M, Shiga T, Maeda Y, Oshio H (2007) Spin crossover iron(III) complexes. Coord Chem Rev 251:2606–2621. https://doi.org/10.1016/j.ccr.2007.08.007

    Article  CAS  Google Scholar 

  47. Burla MC, Camalli M, Carrozzini B, Cascarano GL, Giacovazzo C, Polidori G, Spagna R (2003) SIR2002: the program. J Appl Crystallogr 36:1103

    Article  CAS  Google Scholar 

  48. Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Krist Cryst Mater 229:345

    Google Scholar 

  49. Brandenburg K, Putz H (1999) DIAMOND. Crystal Impact GbR, Bonn

    Google Scholar 

  50. Kuhs W (1992) Generalized atomic displacements in crystallographic structure analysis. Acta Crystallogr Sect A 48:80–98. https://doi.org/10.1107/S0108767391009510

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education of the Czech Republic, Grant No. 20/2018 for specific university research. The crystallographic part was supported by the Project 15-12653S of the Czech Science Foundation using instruments of the ASTRA laboratory established within the Operation program Prague Competitiveness—Project CZ.2.16/3.1.00/24510. M. Buryi and V. Laguta thank for the financial support from the Ministry of Education, Youth and Sports of Czech Republic under Projects LO1409 and CZ.02.1.01/0.0/0.0/16_013/0001406. The authors would like to thank Jiří Šturala for his valuable comments and suggestions to elucidate the mechanism of synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viera Murašková.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 736 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murašková, V., Dušek, M., Buryi, M. et al. Synthesis, characterization and X-ray crystal structure of an iron(III) complex of a tripodal pyridoxal Schiff base ligand: effects of positional disorder on its magnetic properties. Transit Met Chem 43, 605–619 (2018). https://doi.org/10.1007/s11243-018-0249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0249-x

Navigation