Skip to main content
Log in

Synthesis and characterization of transition metal complexes of a hexadentate N4O2 donor Schiff base ligand: X-ray crystal structures of the copper(II) and zinc(II) complexes and their antibacterial properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A potentially hexadentate N4O2 Schiff base ligand, L, has been synthesized by condensation of an aromatic diamine with 2-pyridinecarbaldehyde. The complexes [MLNO3]NO3 (M=Cu, Ni, Cd or Zn) and [MlCl2] (M=Co or Mn) were synthesized by the reactions of L with metal salts in methanol. Both free L and its complexes were characterized by physicochemical and spectroscopic methods. In addition, the crystal structures of [CuLNO3]NO3 and [ZnLNO3]NO3 have been determined by single-crystal X-ray diffraction. In both complexes, the ligand L is coordinated via pyridine and azomethine nitrogen atoms to give a distorted octahedral geometry. These complexes have antibacterial activities against three Gram-positive and three Gram-negative bacteria, which in most cases exceed those of tobramycin and tetracycline as standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chaviara ATh, Cox PJ, Repana KH, Papi RM, Papazisis KT, Zambouli D, Kortsaris AH, Kyriakidis DA, Bolos CA (2004) J Inorg Biochem 98:1271–1283

    Article  CAS  Google Scholar 

  2. Shankera K, Rohinia R, Ravindera V, Reddyb PM, Hob Y (2009) Spectrochim Acta Part A 73:205–211

    Article  Google Scholar 

  3. Bala S, Uppal G, Kamboj S, Saini V, Prasad DN (2012) Med Chem Res 21:1–13

    Article  Google Scholar 

  4. Wu H, Jia F, Kou F, Liu B, Yuan J, Bai Y (2011) Trans Met Chem 36:847–853

    Article  CAS  Google Scholar 

  5. Wang M, Wang LF, Li YZ, Li QX, Xu ZD, Qu DM (2001) Trans Met Chem 26:307–310

    Article  CAS  Google Scholar 

  6. Guo Z, Xing R, Liu S, Zhong Z, Ji X, Wang L, Li P (2007) Carbohydr Res 342:1329–1332

    Article  CAS  Google Scholar 

  7. Jarrahpour A, Khalili D, De Clercq E, Salmi C, Brunel JM (2007) Molecules 12:1720–1730

    Article  CAS  Google Scholar 

  8. Sriram D, Yogeeswari P, Myneedu NS, Saraswat V (2006) Bioorg Med Chem Lett 16:2127–2129

    Article  CAS  Google Scholar 

  9. Metzler CM, Cahill A, Metzler DE (1980) J Am Chem Soc 102:6075–6082

    Article  CAS  Google Scholar 

  10. Dudek GO, Dudek EP (1965) Chem Commun 19:464–466

    Google Scholar 

  11. Keypour H, Shayesteh M, Sharifi-Rad A, Salehzadeh S, Khavasi H, Valencia L (2008) J Organomet Chem 693:3179–3187

    Article  CAS  Google Scholar 

  12. Keypour H, Shayesteh M, Golbedaghi R, Chehregani A, Blackman AG (2012) J Coord Chem 65:1004–1016

    Article  CAS  Google Scholar 

  13. Keypour H, Shayesteh M, Rezaeivala M, Chalabian F, Valencia L (2013) Spectrochim Acta A 101:59–66

    Article  CAS  Google Scholar 

  14. Keypour H, Shayesteh M, Rezaeivala M, Chalabian F, Elerman Y, Buyukgungor O (2013) J Mol Struct 1032:62–68

    Article  CAS  Google Scholar 

  15. Keypour H, Shooshtari A, Rezaeivala M, Kup FO, Rudbari HA (2015) Polyhedron 97:75–82

    Article  CAS  Google Scholar 

  16. Sahin D, Hayvali Z (2012) J Incl Phenom Macro Chem 72:289–297

    Article  CAS  Google Scholar 

  17. Fenton DE, Mattews RW, McPartlin M, Murphy BP, Scowen IJ, Tasker PA (1996) Dalton Trans 16:3421–3427

  18. X-AREA (2005) Version 1.30, program for the acquisition and analysis of data. Stoe & Cie GmbH, Darmstadt

  19. X-RED (2005) Version 1.28b, program for data reduction and absorption correction. Stoe & Cie GmbH, Darmstadt

  20. X-SHAPE (2004) Version 2.05, program for crystal optimization for numerical absorption correction. Stoe & Cie GmbH, Darmstadt

  21. Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Spagna R (2005) J Appl Crystallogr 38:381–388

    Article  CAS  Google Scholar 

  22. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  CAS  Google Scholar 

  23. Forbes BA, Sahm DF, Weissfeld AS, Trevino EA (1990) Methods for testing antimicrobial effectiveness. In: Baron EJ, Peterson LR, Finegold SM (eds) Bailey & Scott’s diagnostic microbiology, 8th ed. Mosby Co, St Louis, pp 171–194

  24. Russel AD, Furr JR (1977) J Appl Bacteriol 43:23–25

    Google Scholar 

  25. Chehregani A, Mohsenzadeh F, Mirazi N, Hajisadeghian S, Baghali S (2010) Pharm Biol 48:1280–1284

    Article  CAS  Google Scholar 

  26. Performance standards for antimicrobial susceptibility testing; Ninth informational supplement (2008) NCCLS document M100-S9. National Committee for Clinical Laboratory Standards, Wayne

  27. Khan MR, Omosto AD (2003) Fitoterapia 74:4494–4497

    Google Scholar 

  28. Dyke SF, Floyd AJ, Sainsbury M, Theobald RS (1978) Organic spectroscopy—an introduction. Longman, New York

    Google Scholar 

  29. Liu H, Wang H, Gao F, Niu D, Lu Z (2007) J Coord Chem 60:2671–2678

    Article  CAS  Google Scholar 

  30. Patil SA, Unki SN, Kulkarni AD, Naik VH, Badami PS (2011) Spectrochim Acta A 79:1128–1136

    Article  CAS  Google Scholar 

  31. Anan NA, Hassan SM, Saad EM, Butler IS, Mostafa SI (2011) Carbohydr Res 346:775–793

    Article  CAS  Google Scholar 

  32. Banerjee S, Ray A, Sen S, Mitra S, Hughes DL, Butcher RJ, Batten SR, Turner DR (2008) Inorg Chim Acta 361:2692–2700

    Article  CAS  Google Scholar 

  33. Abou-Hussein AA, Linert W (2015) Spectrochim Acta A 141:223–232

    Article  CAS  Google Scholar 

  34. Montazerozohori M, Khani S, Tavakol H, Hojjati A, Kazemi M (2011) Spectrochim Acta Part A 81:122–127

    Article  CAS  Google Scholar 

  35. Khandar AA, Cardin C, Hosseini-Yazdi SA, McGrady J, Abedi M, Zarei SA, Gan Y (2010) Inorg Chim Acta 363:4080–4087

    Article  CAS  Google Scholar 

  36. Khandar AA, White J, Taghvaee-Yazdeli T, Hosseini-Yazdi SA, McArdle P (2013) Inorg Chim Acta 400:203–209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Faculty of Chemistry of Bu-Ali Sina University for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hassan Keypour or Majid Rezaeivala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11243_2015_9966_MOESM1_ESM.doc

CCDC 1063688 and 1063689 contain the supplementary crystallographic data for [ZnLNO3]NO3 and [CuLNO3]NO3 compounds, respectively. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk

Supplementary material 1 (DOC 1348 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keypour, H., Shooshtari, A., Rezaeivala, M. et al. Synthesis and characterization of transition metal complexes of a hexadentate N4O2 donor Schiff base ligand: X-ray crystal structures of the copper(II) and zinc(II) complexes and their antibacterial properties. Transition Met Chem 40, 715–722 (2015). https://doi.org/10.1007/s11243-015-9966-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-9966-6

Keywords

Navigation