Skip to main content
Log in

Universal Frequency-Dependent Permeability of Heterogeneous Porous Media: Effective–Medium Approximation and Critical-Path Analysis

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Experiments, numerical simulations, and analytical models for simple models of porous media, such as a single pore and spatially-periodic models, have provided evidence that the dynamic, frequency-dependent permeability of porous media, when rescaled by its static value, may follow a universal function of the suitably-rescaled frequency, independent of the morphology of the pore space. No approach has, however, been developed to prove or refute the universality for a general model of a heterogeneous porous medium. We propose two approaches to analyze the problem. One is based on a dynamic effective-medium approximation (EMA) for d-dimensional networks of interconnected pores as the model of porous media, characterized by a pore-size or pore-conductance distribution. The EMA is accurate when the heterogeneity of the pore space is not very strong. The second approach is based on the critical-path analyzis that provides accurate estimates of the permeability when the pore space is highly heterogeneous. We show that both approaches predict that the rescaled frequency-dependent permeability is a universal function of the rescaled frequency. Thus, the two approaches together strongly support the universality of the rescaled dynamic permeability in any porous medium. The implications for the frequency-dependent electrical conductivity, the formation factor, and the diffusion and dispersion coefficients of porous media are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ambegaokar, V., Halperin, B.I., Langer, J.S.: Hopping conductivity in disordered systems. Phys. Rev. B 4, 2612 (1971)

    Article  Google Scholar 

  • Atencia, J., Beebe, D.J.: Controlled microfluidic interfaces. Nature 437, 648 (2005)

    Article  Google Scholar 

  • Barenblatt, G.E., Zheltov, I.P.: On the basic equations of filtration of homogeneous fluids in fractured rock. Dukl. Akad. Nauk. USSR 132, 545 (1960)

    Google Scholar 

  • Berman, D., Orr, B.G., Jaeger, H.M., Goldman, A.M.: Conductances of filled two-dimensional networks. Phys. Rev. B 33, 4301 (1986)

    Article  Google Scholar 

  • Bringer, M.R., Gerdts, C.J., Song, H., Tice, J.D., Ismagilov, R.F.: Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets. Phil. Trans. R. Soc. A 362, 1087 (2004)

    Article  Google Scholar 

  • Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen. Annalen der Physik 416, 636 (1935)

  • Chapman, A.M., Higdon, J.J.L.: Oscillatory Stokes flow in periodic porous media. Phys. Fluids 4, 2099 (1992)

    Article  Google Scholar 

  • Charlaix, E., Kushnik, A.P., Stokes, J.P.: Experimental study of dynamic permeability in porous media. Phys. Rev. Lett. 61, 1595 (1988)

    Article  Google Scholar 

  • Cortis, A., Smeulders, D.M.J., Guermond, J.L., Lafarge, D.: Influence of pore roughness on high-frequency permeability. Phys. Fluids. 15, 1766 (2003)

    Article  Google Scholar 

  • del Rió, J.A., López de Haro, M., Whitaker, S.: Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube. Phys. Rev. E 58, 6323 (1998)

  • del Rió, J.A., López de Haro, M., Whitaker, S.: Erratumn: Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube. Phys. Rev. E 64, 039901 (2001)

  • Dobrin, R., Duxbury, P.M.: Minimum spanning trees on random networks. Phys. Rev. Lett. 86, 5076 (2001)

    Article  Google Scholar 

  • Dyre, J.C.: Universal low-temperature ac conductivity of macroscopically disordered nonmetals. Phys. Rev. B 44, 12511 (1993)

    Article  Google Scholar 

  • Friedman, S.P., Seaton, N.A.: Critical path analysis of the relationship between permeability and electrical conductivity of three-dimensional pore networks. Water Resour. Res. 34, 1703 (1998)

    Article  Google Scholar 

  • Ghanbarian, B.: Applications of critical path analysis to uniform grain packings with narrow conductance distributions: I. Single-phase permeability, Adv. Water Resour. 137, 103529 (2020a)

  • Ghanbarian, B.: Applications of critical path analysis to uniform grain packings with narrow conductance distributions: II. Water relative permeability. Adv. Water Resour. 137, 103524 (2020)

  • Ghanbarian, B., Torres-Verdín, C., Skaggs, T.H.: Quantifying tight-gas sandstone permeability via critical path analysis. Adv. Water Resour. 92, 316 (2016)

    Article  Google Scholar 

  • Glasgow, I., Aubry, N.: Enhancement of microfluidic mixing using time pulsing. Lab. Chip 3, 114 (2003)

    Article  Google Scholar 

  • Glasgow, I., Lieber, S., Aubry, N.: Parameters influencing pulsed flow mixing in microchannels. Anal. Chem. 76, 4825 (2004)

    Article  Google Scholar 

  • Glover, P.W.J., Peng, R., Lorinczi, P., Di., B.: Experimental measurement of frequency-dependent permeability and streaming potential of sandstones. Transp. Porous Media 131, 333 (2020)

  • Halperin, B.I., Feng, S., Sen, P.N.: Differences between lattice and continuum percolation transport exponent. Phys. Rev. Lett. 54, 2391 (1985)

    Article  Google Scholar 

  • Huebner, A., Sharma, S., Srisa-Art, M., Hollfelder, F., Edel, J.B., deMello, A.J.: Microdroplets: a sea of applications? Lab. Chip 8, 1244 (2008)

    Article  Google Scholar 

  • Hughes, B.D.: Random Walks and Random Environments, Vol. 2. London, Oxford University Press

  • Hunt, A.G., Sahimi, M.: Flow, transport and reaction in porous media: percolation scaling, critical-path analysis, and effective-medium approximation. Rev. Geophys. 55, 993 (2017)

    Article  Google Scholar 

  • Jo, K., Chen, Y.-L., de Pablo, J.J., Schwartz, D.C.: Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows. Lab. Chip 9, 2348 (2009)

    Article  Google Scholar 

  • Joanicot, M., Ajdari, A.: Droplet control for microfluidics. Science 309, 887 (2005)

    Article  Google Scholar 

  • Johnson, D.L., Koplik, J., Dashen, R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379 (1987)

    Article  Google Scholar 

  • Katz, A.J., Thompson, A.H.: Quantitative prediction of permeability in porous rock. Phys. Rev. B 34, 8179 (1986)

    Article  Google Scholar 

  • Khoshmanesh, K., Almansouri, A., Albloushi, H., Yi, P., Soffe, R., Kalantar-Zadeh, K.: A multi-functional bubble-based microfluidic system. Sci. Rep. 5, 9942 (2015)

    Article  Google Scholar 

  • Kirkpatrick, S.: Classical transport in disordered media: scaling and effective-medium theories. Phys. Rev. Lett. 27, 1722 (1971)

    Article  Google Scholar 

  • Knackstedt, M.A., Sahimi, M., Chan, D.Y.C.: Cellular-automata calculation of frequency-dependent permeability of porous media. Phys. Rev. E 47, 2593 (1993)

    Article  Google Scholar 

  • Knackstedt, M.A., Sahimi, M., Sheppard, A.P.: Invasion percolation with long-range correlation: first-order phase transition and nonuniversal scaling properties. Phys. Rev. E 61, 4920 (2000)

    Article  Google Scholar 

  • Kutay, M.E., Aydilek, A.H.: Dynamic effects on moisture transport in asphalt concrete. J. Transp. Eng. ASCE 133, 406 (2007)

    Article  Google Scholar 

  • Landauer, R.: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 779 (1952)

    Article  Google Scholar 

  • Le Doussal, P.: Permeability versus conductivity for porous media with wide distribution of pore sizes. Phys. Rev. B. 39, 4816 (1989)

    Article  Google Scholar 

  • Leroy, P., Revil, A.: A mechanistic model for the spectral induced polarization of clay materials. J. Geophys. Res. 114, B10202 (2009)

    Article  Google Scholar 

  • Lombard, J., Pagonabarraga, I., Corvera, P.E.: Dynamic response of a compressible binary fluid mixture. Phys. Rev. Fluids 5, 064201 (2020)

    Article  Google Scholar 

  • Mueller, T.M., Sahay, P.N.: Stochastic theory of dynamic permeability in poroelastic media. Phys. Rev. E 84, 026329 (2011)

    Article  Google Scholar 

  • Odagaki, T., Lax, M.: Coherent-medium approximation in the stochastic transport theory of random media. Phys. Rev. B 24, 5284 (1981)

    Article  Google Scholar 

  • Odagaki, T., Lax, M.: Hopping conduction in the \(d-\)dimensional lattice bond-percolation problems. Phys. Rev. B 28, 2755 (1983)

    Article  Google Scholar 

  • Pazdniakou, A., Adler, P.M.: Dynamic permeability of porous media by the lattice Boltzmann method. Adv. Water Resour. 62, 292 (2013)

    Article  Google Scholar 

  • Pazhoohesh, E., Hamzehpour, H., Sahimi, M.: Numerical simulation of ac conduction in three-dimensional heterogeneous materials. Phys. Rev. B 73, 174206 (2006)

    Article  Google Scholar 

  • Perrot, C., Chevillotte, F., Panneton, R., Allard, J.-F., Lafarge, D.: On the dynamic viscous permeability tensor symmetry. J. Acoust. Soc. Am. 56, 210 (2008)

    Article  Google Scholar 

  • Revil, A., Woodruff, W.F., Torres-Verdin, C., Prasad, M.: Complex conductivity tensor of anisotropic hydrocarbon-bearing shales and mudrocks. Geophysics 78, D403 (2013)

    Article  Google Scholar 

  • Revil, A., Binley, A., Mejus, L., Kessouri, P.: Predicting permeability from the characteristic relaxation time and intrinsic formation factor of complex conductivity spectra. Water Resour. Res. 51, 6672 (2015)

    Article  Google Scholar 

  • Roberts, J.N., Schwartz, L.M.: Grain consolidation and electrical conductivity in porous media. Phys. Rev. B 31, 5990 (1985)

    Article  Google Scholar 

  • Sahimi, M.: Effective-medium approximation for density of states and the spectral dimension of percolation networks. J. Phys. C 17, 3957 (1984)

    Article  Google Scholar 

  • Sahimi, M.: Nonlinear transport processes in disordered media. AIChE J. 39, 369 (1993)

    Article  Google Scholar 

  • Sahimi, M.: Applications of Percolation Theory. Taylor & Francis, London (1994)

    Book  Google Scholar 

  • Sahimi, M.: Heterogeneous Materials I. Springer, New York (2003)

    Google Scholar 

  • Sahimi, M.: AC hopping conduction at extreme disorder takes place on the bond invasion percolation cluster; preprint

  • Sahimi, M., Hashemi, M., Ghassemzadeh, J.: Site-bond invasion percolation with fluid trapping. Physica A 260, 231 (1998)

    Article  Google Scholar 

  • Sahimi, M., Hughes, B.D., Scriven, L.E., Davis, H.T.: Stochastic transport in disordered systems. J. Chem. Phys. 78, 6849 (1983)

    Article  Google Scholar 

  • Sahimi, M., Tsotsis, T.T.: Transient diffusion and conduction in heterogeneous mediSahimia: beyond the classical effective-medium approximation. Ind. Eng. Chem. Res. 36, 3043 (1997)

    Article  Google Scholar 

  • Sheng, P., Zhou, M.-Y.: Dynamic permeability in porous media. Phys. Rev. Lett. 61, 1591 (1988)

    Article  Google Scholar 

  • Skaggs, T.H.: Assessment of critical path analyses of the relationship between permeability and electrical conductivity of pore networks. Adv. Water Resour. 34, 1335 (2011)

    Article  Google Scholar 

  • Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977 (2005)

    Article  Google Scholar 

  • Srisa-Art, M., deMello, A.J., Edel, J.B.: High-throughput DNA droplet assays using picoliters reactor volumes. Anal. Chem. 79, 6682 (2007)

    Article  Google Scholar 

  • Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd edn. Taylor & Francis, London (1994)

    Google Scholar 

  • Stone, H.A., Stroock, A.D., Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381 (2004)

    Article  Google Scholar 

  • Summerfield, S.: Effective medium theory of A.C. hopping conductivity for random-bond lattice models. Solid State Commun. 39, 401 (1981)

  • Torres, R.A.M., Pagonabarraga, I., Corvera, P.E.: Resonances of Newtonian fluids in elastomeric microtubes. Phys. Fluids 29, 122003 (2017)

    Article  Google Scholar 

  • Ty̆c S, Halperin BI,: Random resistor network with an exponentially wide distribution of bond conductances. Phys. Rev. B 39, 877 (1989)

  • Valdés-Parada, J.F., Alvarez-Ramirez, J.: Frequency-dependent dispersion in porous media. Phys. Rev. E 84, 031201 (2011)

  • Vijayakumar, K., Gulati, S., deMello, A.J., Edel, J.B.: Rapid cell extraction in aqueous two-phase microdroplet systems. Chem. Sci. 1, 447 (2010)

    Article  Google Scholar 

  • Woodruff, W.F., Revil, A., Torres-Verdin, C.: Laboratory determination of the complex conductivity tensor of unconventional anisotropic shales. Geophysics 79, E183 (2014)

    Article  Google Scholar 

  • Xie, Y., Chindam, C., Nama, N., Yang, S., Lu, M., Zhao, Y., Mai, J.D., Costanzo, F., Huang, T.J.: Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device. Sci. Rep. 5, 12572 (2015)

    Article  Google Scholar 

  • Zhang, Q., Zhang, M., Djeghlaf, L., Bataille, J., Gamby, J., Haghiri-Gosnet, A.M., Pallandre, M.: Logic digital fluidic in miniaturized functional devices: perspective to the next generation of microfluidic labonchips. Electrophoresis 38, 953976 (2017)

  • Zhou, M.-Y., Sheng, P.: First-principles calculations of dynamic permeability in porous media. Phys. Rev. B 39, 12027 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Behzad Ghanbarian for his help in deriving Eq. (16), and for bringing to his attention the experimental data for frequency-dependent electrical conductivity of porous media mentioned above. This work was supported in part by the National Science Foundation Grant CBET 2000966.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sahimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahimi, M. Universal Frequency-Dependent Permeability of Heterogeneous Porous Media: Effective–Medium Approximation and Critical-Path Analysis. Transp Porous Med 144, 759–773 (2022). https://doi.org/10.1007/s11242-022-01839-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-022-01839-8

Keywords

Navigation