Skip to main content

Advertisement

Log in

Dependence of the insulating behavior of some common woods to the pore network and packing density of their fibers: a microstructural approach

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Thermophysical and microstructural behavior of eleven tropical woods widely available and commonly used was investigated. Experimental measurements of thermal conductivity and thermal diffusivity of wood were performed using the heat flow meter and transient plane source technique. The results show values in the range of 0.2–0.37 mm2/s for thermal diffusivity and 0.12–0.34 W m−1 K−1 for thermal conductivity. The correlation between the thermal conductivity and parameters as porosity, pore size distribution, intensity ratio of lignin and microstructure was drawn. The thermal conductivity of wood decreases with the increase in pores volume (vp). For vp > 70%, the values are between 0.1 and 0.15 W m−1 K−1 and reach 0.23 W m−1 K−1 for vp between 40 and 60%. For dense woods with the vp less than 40%, the values are between 0.24 and 0.35 W m−1 K−1. The results show experimental values of the effective thermal conductivity of wood species closer to the values of parallel model. The presence of ray and parenchyma which appear perpendicular to the axis of the fibers in the structure of the wood species makes it difficult to have straight correlation. This suggests that heat flux which travels through the matrix of wood follows a very complex road linked to the microstructural features of each class of wood. These results appear as significant contribution for the future development of sustainable energy technologies in relation to the prediction of energy saving and building energy metering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 
Fig. 6 
Fig. 7 
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

k e :

Effective thermal conductivity

k 1 :

Thermal conductivity of solid continuous phase

k 2 :

Thermal conductivity of dispersed phase (air)

v 1 :

Volume of solid fraction

v 2 :

Volume of dispersed phase

vp:

Volume of pores

cos2 α :

Orientation parameter

R :

Thermal resistance

φ :

Heat flux density

r :

Pore radius

γ :

Surface tension of mercury

θ :

Contact angle

References

  • Ansell, M.P.: Wood microstructure—a cellular composite. Wood Compos. (2015). https://doi.org/10.1016/B978-1-78242-454-3.00001-9

    Article  Google Scholar 

  • Ariel, R., Díaza, Erick, I., Saavedra, F., Diego, A., Vascoc, Sergio, J., Yanezb, Juan, C., Pinab, Carlos, F.G.: Multiscale modeling of the thermal conductivity of wood and its application to cross-laminated timber. Int. J. Therm. Sci. (2019). https://doi.org/10.1016/j.ijthermalsci.2019.05.016

    Article  Google Scholar 

  • Baley, C.: Fibres naturelles de renfort pour matériaux composites. Ed. Techniques de l'ingénieur (2004)

  • Bledzki, A., Gassan, J.: Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 24, 221–274 (1999)

    Article  Google Scholar 

  • Besset, J.: Bois et matériaux dérivés. Ed. Techniques de l'ingénieur (1987)

  • Böttcher, C.J.F.: Theory of Electric Polarization, pp. 415–420. Elsevier, Houston (1952)

    Google Scholar 

  • Cetiner, I., Shea, A.D.: Wood waste as an alternative thermal insulation building material solution. Energy Build. 168, 374–384 (2018). https://doi.org/10.1016/j.enbuild.2018.03.019

    Article  Google Scholar 

  • Daïan, J.F: Equilibre et transferts en milieux poreux I- Etats d’équilibre. (2010)

  • Dammstrom, S., Salmén, L., Gatenholm, P.: Biores 4, 3 (2009)

    Google Scholar 

  • Eitelberger, J., Hofstetter, K.: Multiscale homogenization of wood transport properties: diffusion coefficients for steady-state moisture transport. Wood Mater Sci Eng. 5(2), S.97–S.103 (2010)

    Article  Google Scholar 

  • Eucken, A.: Allgemeine Gesetzma¨ßigkeitenfu¨r das Wa¨rmeleitvermo¨-gen verschiedener Stoffarten und Aggregatzusta¨nde. Forschung Gabiete Ingenieur. 11, 6–20 (1940)

    Article  Google Scholar 

  • Gu, H., Hunt, G.: Two-dimensional finite element heat transfer model of softwood. Part II. Macrostructural effects. Wood Fiber Sci. 38, 599–608 (2006)

    Google Scholar 

  • Gu, H., Hunt, G.: Two-dimensional finite element heat transfer model of softwood. Part III. Effect of moisture content on thermal conductivity. Wood Fiber Sci. 39, 159–166 (2007)

    Google Scholar 

  • Gustaffson, S.E.: Transient plane source technique for thermal conductivity and thermal diffusivity measurements of solids materials. Rev. Sci. Instrum. 62, 797–804 (1991)

    Article  Google Scholar 

  • He, S., Lin, L.Y., Fu, F., Zhou, Y.D., Fan, M.Z.: Microwave treatment for enhancing the liquid permeability of Chinese fir. BioResources 9, 1924–1938 (2014)

    Google Scholar 

  • He, Y.: Rapid thermal conductivity measurement with a hot disk sensor, Part 1: theorical considerations. Thermochim. Acta. 436, 122–129 (2005)

    Article  Google Scholar 

  • Hubbe, M.A., Lucia, L.A.: Biomaterials 2, 534 (2007)

    Google Scholar 

  • Hunt, G., Gu, H.: Two-dimensional finite element heat transfer model of softwood. Part I. Effective thermal conductivity. Wood Fiber Sci. 38, 592–598 (2006)

    Google Scholar 

  • Hong-mei, G., Zink-Sharp, A.: Geometric model for softwood transverse thermal conductivity. Part I. Wood Fiber Sci. 37, 699–711 (2005)

    Google Scholar 

  • John, M.J., Thomas, S.: Biofibers and biocomposites. Carbohydr. Polym. 71, 343–364 (2008)

    Article  Google Scholar 

  • Kawasaki, T., Kawai, S.: Thermal insulation properties of wood-based sandwich panel for use as structural insulated walls and floors. J. Wood Sci. 52, 75–83 (2006). https://doi.org/10.1007/s10086-005-0720-0

    Article  Google Scholar 

  • Landauer, R.: The electrical resistance of binary metallic mixtures. J. Appl. Phys. 23, 779–784 (1952)

    Article  Google Scholar 

  • Li, T., Zhu, M., Yang, Z., Song, J., Dai, J., Yao, Y., Luo, W., Pastel, G., Yang, B., Hu, L.: Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv. Energy Mater. 6, 1601122 (2016)

    Article  Google Scholar 

  • Limam, A., Zerizer, A., Quenard, D., Hebert, S., Abdelkrim, C.: Experimental thermal characterization of bio-based materials (Aleppo Pine wood, cork and their composites) for building insulation. Energy Build. 116, 89–95 (2016). https://doi.org/10.1016/j.enbuild.2016.01.007

    Article  Google Scholar 

  • Maxwell, J.C.: A treatise on electricity and magnetism, chapter 9, 3rd edn. Dover Publications Inc., New York (1954)

    Google Scholar 

  • Monties, B.: Les polymères végétaux - Polymères pariétaux et alimentaires non azotés. Ed Gautier-Villars. Paris (1980)

  • Nait-Ali, B., Haberko, K., Vesteghem, H., Absi, J., Smith, D.: Thermal conductivity of highly porous zirconia. J. Eur. Ceram. Soc. 26, 3567 (2006)

    Article  Google Scholar 

  • Nouemsi, E.S., Tene Fongang, R.T., Kamseu, E., Andreola, F., Boubakar, L., Sylvie, R., Leonelli, C.: Microstructure and physico-chemical transformation of some common woods from Cameroon during drying. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09890-7

    Article  Google Scholar 

  • Olek, W., Weres, J., Guzenda, R.: Effects of thermal conductivity data on accuracy of modeling heat transfer in wood. Holzforschung 57, 317–325 (2003)

    Article  Google Scholar 

  • Peng, L.M., Wang, D., Fu, F., Song, B.Q.: Analysis of wood pore characteristics with mercury intrusion porosimetry and X-ray micro-computed tomography. Wood Res. 60, 857–864 (2015)

    Google Scholar 

  • Plötze, M., Niemz, P.: Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry. J. Wood Wood Prod. 69, 649–657 (2011)

    Article  Google Scholar 

  • Rayleigh, L.: On the influence of obstacles arranged in rectangular order upon the properties of medium. Phil. Mag. 34, 481–507 (1892)

    Article  Google Scholar 

  • Roels, S., Elsen, J., Carmeliet, J., Hens, H.: Characterization of pore structure by combining mercury porosimetry and micrography. Mater. Struct. 34, 76–82 (2001)

    Article  Google Scholar 

  • Seo, J., Cha, J., Kim, S.: Enhancement of the thermal conductivity of adhesives for wood flooring using xGnP. Energy Build. 51, 153–156 (2012). https://doi.org/10.1016/j.enbuild.2012.05.003

    Article  Google Scholar 

  • Siau, J. F.: influence of moisture on physical properties, Department of Wood Science and Forest Products. Virginia Polytechnic Institute and State University. 227pp. (1995)

  • Suleiman, B.M., Larfeldt, J., Leckner, B., Gustavsson, M.: Thermal conductivity and diffusivity of wood. Wood Sci. Technol. 33, 465–473 (1999)

    Article  Google Scholar 

  • Sova, D., Porojan, M., Bedelean, B., Huminic, G.: Effective thermal conductivity models applied to wood briquettes. Int. J. Therm. Sci. 124, 1–12 (2018). https://doi.org/10.1016/j.ijthermalsci.2017.09.020

    Article  Google Scholar 

  • Taoukil, D., Sick, F., Mimet, A., Ezbakhe, H., Ajzoul, T.: Moisture content influence on the thermal conductivity and diffusivity of wood concrete composite. Constr. Build. Mater. 48, 104–115 (2013)

    Article  Google Scholar 

  • Vay, O., De, B.K., Hansmann, C., Teischinger, A., Müller, U.: Thermal conductivity of wood at angles to the principal anatomical directions. Wood Sci. Technol. 49, 577–589 (2015)

    Article  Google Scholar 

  • Wang, D., Peng, L.M., Zhu, G.Y., Fu, F., Zhou, Y.D., Song, B.Q.: Improving the sound absorption capacity of wood by microwave treatment. BioResources 9, 7504–7518 (2014)

    Google Scholar 

  • Wang, J., Carson, J.K., North, M.F., Cleland, D.J.: A new approach to modelling the effective thermal conductivity of heterogeneous materials. Int. J. Heat Mass Transf. 49, 3075–3083 (2006)

    Article  Google Scholar 

  • Yu, Z., Xu, X., Fan, L., Hu, Y., Cen, K.: Experimental measurements of thermal conductivity of wood species in china: effects of density, temperature, and moisture content. For. Prod. J. 61, 130–135 (2011)

    Google Scholar 

  • Zhou, M.: Compréhension des mécanismes de transferts d’eau dans le bois. Thèse de doctorat. Université Paris-Est. École doctorale Science, Ingénierie et Environnement. 217 (2018)

Download references

Acknowledgements

Dr. Elie Kamseu wishes to thank the Royal Society and the African Academy of Science for the Flair Fellowship, Grant No. FLR/R1/201402. The authors of this article wish to thank Mr KENMEUGNI Dieudonné for his contribution during the specimen’s collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kamseu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouemsi, E.S., Ngouloure, Z.N.M., Bidoung, J.C. et al. Dependence of the insulating behavior of some common woods to the pore network and packing density of their fibers: a microstructural approach. Transp Porous Med 138, 309–336 (2021). https://doi.org/10.1007/s11242-021-01610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01610-5

Keywords

Navigation