Skip to main content
Log in

Similarity Solutions for Local Thermal Non-equilibrium Boundary-Layer Flows in a Fluid-Saturated Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A general boundary-layer coordinate transformation was proposed in order to find the necessary conditions under which similarity solutions exist for free, forced and mixed convective Darcian flows subject to local thermal non-equilibrium. The aim of this study is to present the effects of local thermal non-equilibrium on the boundary-layer heat transfer in porous media, identifying each of the parameters controlling the thermal boundary-layer development. The findings of this systematic study are quite beneficial to those dealing with thermal applications using porous media. Similarity solutions are found to exist for such local thermal non-equilibrium cases as forced convection around the stagnation regions of horizontal cylinder and sphere heated according to a power function of the distance from the stagnation point, free convection over a vertical plate with its temperature increasing linearly, and free and mixed convection around the stagnation regions of isothermally heated horizontal cylinder and sphere. The study clearly indicates that the local thermal equilibrium assumption results in substantial overestimation of heat transfer rates. The local non-equilibrium effects must be considered when the modified interstitial Stanton number is less than its criterion value around 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(c_{\text{pf}}\) :

Specific heat of fluid at constant pressure (J/kg K)

\(f\) :

Dimensionless streamfunction

\(g, g_{x}\) :

Acceleration of gravity and its tangential component (m/s2)

\(h_{v}\) :

Interstitial volumetric heat transfer coefficient (W/m3 K)

i :

i = 0 for plane flow and i = 1 for axisymmetric flow

I :

Function accounting for the geometrical and thermal effects on the boundary layer

\(k_{\text{fe}}\) :

Effective thermal conductivity for the fluid phase (W/mK)

\(k_{\text{se}}\) :

Effective thermal conductivity for the solid phase (W/mK)

\(K\) :

Permeability (m2)

\(m_{\text{T}}\) :

Function describing the wall temperature variation

p :

Pressure (Pa)

\(q_{\text{w}}\) :

Wall heat flux (W/m2)

\(r\left( x \right)\) :

Geometrical function (m)

\(r^{*}\) :

\(r^{*} = 1\) for plane body and \(r^{*} = r\) for axisymmetric body (m)

R :

Radius (m)

\({\text{St}}_{v}\) :

Interstitial Stanton number

T :

Temperature

\(u, v\) :

Darcian velocity (apparent velocity) components in x and y directions (m/s),

\(x\) :

Streamwise boundary-layer coordinate

\(y\) :

Coordinate normal to the wall surface (m)

\(z_{g}\) :

Elevation measured from the front stagnation point (m)

\(\alpha_{\text{fe}}\) :

Effective thermal diffusivity of the fluid (m2/s)

\(\beta\) :

Thermal expansion coefficient (1/K)

\(\gamma\) :

Ratio of the effective fluid thermal conductivity to its solid-phase counterpart

\(\delta_{\text{f}}\) :

Fluid-phase thermal boundary-layer thickness (m)

\(\delta_{\text{s}}\) :

Solid-phase thermal boundary-layer thickness (m)

\(\zeta\) :

Ratio of the fluid-phase boundary-layer thickness to the solid-phase counterpart

\(\eta\) :

Transformed normal coordinate

\(\theta\) :

Temperature profile function

\(\kappa\) :

Ratio of the buoyancy-induced velocity to the externally forced velocity

\(\lambda\) :

Shape parameter for the temperature profile function

\(\mu_{\text{f}}\) :

Fluid viscosity (Pa s)

\(\nu_{\text{f}}\) :

Fluid kinematic viscosity (m2/s)

\(\xi\) :

Transformed streamwise coordinate

\(\rho_{\text{f}}\) :

Fluid density (kg/m3)

\(\psi\) :

Stream function (m2/s)

e:

Boundary-layer edge

f:

Fluid phase

s:

Solid phase

w:

Wall

References

  • Amiri, A., Vafai, K.: Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int. J. Heat Mass Transf. 37, 939–954 (1994)

    Article  Google Scholar 

  • Bai, X., Nakayama, A.: A local thermal non-equilibrium integral analysis for forced convective thermal boundary development in a channel filled with a fluid-saturated porous medium. Int. J. Heat Mass Transf. 142, 118446 (2019)

    Article  Google Scholar 

  • Carbonnel, R.G., Whitaker, S.: Heat and mass transfer in porous media. In: Bear, J., Corapcioglu, M.Y. (eds.) Fundamentals of Transport Phenomena in Porous Media, pp. 121–198. Martinus Nijhoff, Dordrecht (1984)

    Chapter  Google Scholar 

  • Cebeci, T., Bradshaw, P.: Physical and Computational Aspects of Convective Heat Transfer. Springer, New York (1984)

    Book  Google Scholar 

  • Celli, M., Rees, D.A.S., Barletta, A.: The effect of local thermal non-equilibrium on forced convection boundary layer flow from a heated surface in porous media. Int. J. Heat Mass Transf. 53, 3533–3539 (2010)

    Article  Google Scholar 

  • Cheng, P., Minkowycz, W.J.: Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. J. Geophys. Res. 82, 2040–2044 (1977)

    Article  Google Scholar 

  • Jiang, P.X., Ren, Z.P.: Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model. Int. J. Heat Fluid Flow 22, 102–110 (2001)

    Article  Google Scholar 

  • Jiang, P.X., Ren, Z.P., Wang, B.X., Wang, Z.: Forced convective heat transfer in a plate channel filled with solid particles. J. Therm. Sci. 5, 43–53 (1996)

    Article  Google Scholar 

  • Johnson, C.H., Cheng, P.: Possible similarity solutions for free convection boundary layers adjacent to flat plates in porous media. Int. J. Heat Mass Transf. 21, 709–718 (1978)

    Article  Google Scholar 

  • Kuwahara, F., Yang, C., Ando, K., Nakayama, A.: Exact solutions for a thermal nonequilibrium model of fluid saturated porous media based on an effective porosity. ASME J. Heat Transf. 133(11), 12602 (2011). https://doi.org/10.1115/1.4004354

    Article  Google Scholar 

  • Lee, D.Y., Vafai, K.: Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media. Int. J. Heat Mass Transf. 42(3), 423–435 (1999)

    Article  Google Scholar 

  • Masuoka, T.: Free convection heat transfer from a vertical surface to a porous medium. Trans. Jpn. Soc. Mech. Eng. 34(259), 491–500 (1968). https://doi.org/10.1299/kikai1938.34.491

    Article  Google Scholar 

  • Nakayama, A.: PC-Aided Numerical Heat Transfer and Convective Flow. CRC Press, Boca Raton (1995)

    Google Scholar 

  • Nakayama, A., Koyama, H.: Free convective heat transfer over a non-isothermal body of arbitrary shape embedded in a fluid-saturated porous medium. Trans. ASME J. Heat Transf. 109, 125–130 (1987)

    Article  Google Scholar 

  • Nakayama, A., Pop, I.: A unified similarity transformation for free, forced and mixed convection in Darcy and non-Darcy porous media. Int. J. Heat Mass Transf. 34, 357–367 (1991)

    Article  Google Scholar 

  • Nakayama, A., Ando, K., Yang, C., Sano, Y., Kuwahara, F., Liu, J.: A study on interstitial heat transfer in consolidated and unconsolidated porous media. Heat Mass Transf. 45, 1365–1372 (2009)

    Article  Google Scholar 

  • Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (1992)

    Book  Google Scholar 

  • Ouyang, X.-L., Vafai, K., Jiang, P.-X.: Analysis of thermally developing flow in porous media under local thermal non-equilibrium conditions. Int. J. Heat Mass Transf. 67, 768–775 (2013)

    Article  Google Scholar 

  • Peterson, G.P., Chang, C.S.: Two-phase heat dissipation utilizing porous-channels of high-conductivity materials. J. Heat Transf. 120, 243–252 (1998)

    Article  Google Scholar 

  • Quintard, M.: Modelling local non-equilibrium heat transfer in porous media. In: Proceedings of the 11th International Heat Transfer Conference, vol. 1, pp. 279–285 (1998)

  • Quintard, M., Whitaker, S.: One and two equation models for transient diffusion processes in two-phase systems. Adv. Heat Transf. 23, 369–465 (1993)

    Article  Google Scholar 

  • Quintard, M., Whitaker, S.: Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments. Int. J. Heat Mass Transf. 38, 2779–2796 (1995)

    Article  Google Scholar 

  • Rees, D.A.S.: Vertical free convective boundary-layer flow in a porous medium using a thermal nonequilibrium model: elliptical effects. Z. Angew. Math. Phys. 54, 437–448 (2003)

    Article  Google Scholar 

  • Rees, D.A.S., Pop, I.: Vertical free convective boundary-layer flow in a porous medium using a thermal non-equilibrium model. J. Porous Media 3(1), 31–44 (2000)

    Article  Google Scholar 

  • Rees, D.A.S., Bassom, A.P., Pop, I.: Forced convection past a heated cylinder in a porous medium using a thermal nonequilibrium model: boundary layer analysis. Eur. J. Mech. B. Fluids 22, 473–486 (2003)

    Article  Google Scholar 

  • Shah, N.A., Animasaun, I.L., Ibraheem, R.O., Babatunde, H.A., Sandeep, N., Pop, I.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 249, 980–990 (2018)

    Article  Google Scholar 

  • Spiga, M., Morini, G.L.: Transient response of non-thermal equilibrium packed beds. Int. J. Eng. Sci. 37, 179–188 (1999)

    Article  Google Scholar 

  • Vafai, K., Sozen, M.: Analysis of energy and momentum transport for fluid flow through a porous bed. J. Heat Transf. 112, 690–699 (1990)

    Article  Google Scholar 

  • White, F.M.: Viscous fluid flow, pp. 9–96. McGraw-Hill Inc., New York (1974a)

    Google Scholar 

  • White, F.M.: Viscous fluid flow, pp. 256–257. McGraw-Hill Inc., New York (1974b)

    Google Scholar 

  • Wooding, R.A.: Convection in a saturated porous medium at large Rayleigh number or Peclet number. J. Fluid Mech. 15, 527–544 (1963)

    Article  Google Scholar 

  • Yang, K., Vafai, K.: Transient aspects of heat flux bifurcation in porous media: an exact solution. J. Heat Transf. 133(5), 052602 (2011)

    Article  Google Scholar 

  • Yang, C., Ando, K., Nakayama, A.: A local thermal non-equilibrium analysis of fully developed forced convective flow in a tube filled with a porous medium. Transp. Porous Media 89, 237–249 (2011a)

    Article  Google Scholar 

  • Yang, C., Kuwahara, F., Liu, W., Nakayama, A.: Thermal non-equilibrium forced convective flow in an annulus filled with a porous medium. Open Transp. Phenom. J. 3, 31–39 (2011b)

    Article  Google Scholar 

  • Zhang, W., Bai, X., Bao, M., Nakayama, A.: Heat transfer performance evaluation based on local thermal non-equilibrium for air forced convection in channels filled with metal foam and spherical particles. Appl. Therm. Eng. 5, 735–742 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Nakayama.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Y., Kuwahara, F., Bai, X. et al. Similarity Solutions for Local Thermal Non-equilibrium Boundary-Layer Flows in a Fluid-Saturated Porous Medium. Transp Porous Med 134, 117–137 (2020). https://doi.org/10.1007/s11242-020-01439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01439-4

Keywords

Navigation