Skip to main content
Log in

Stress-Dependent Porosity and Permeability of Porous Rocks Represented by a Mechanistic Elastic Cylindrical Pore-Shell Model

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The stress dependency of the porosity and permeability of porous rocks is described theoretically by representing the preferential flow paths in heterogeneous porous rocks by a bundle of tortuous cylindrical elastic tubes. A Lamé-type equation is applied to relate the radial displacement of the internal wall of the cylindrical elastic tubes and the porosity to the variation of the pore fluid pressure. The variation of the permeability of porous rocks by effective stress is determined by incorporating the radial displacement of the internal wall of the cylindrical elastic tubes into the Kozeny–Carman relationship. The fully analytical solutions of the mechanistic elastic pore-shell model developed by combining the Lamé and Kozeny–Carman equations are shown to lead to very accurate correlations of the stress dependency of both the porosity and the permeability of porous rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A 1 and A b :

Pore and bulk cross-sectional areas of porous rock (m2)

a, b, c, d and e :

Empirical parameters

a′, b′, c′ and D′:

Empirical parameters

A, B, C, D and F :

Empirical parameters

E :

Young’s modulus (Pa)

K :

Intrinsic permeability of porous rock (m2)

K o :

Intrinsic permeability at a reference effective stress \( \sigma_{\text{o}} \) (m2)

L 1 and L b :

Length of actual tortuous flow path and bulk length of porous rock (m)

n :

Number of flow paths formed in porous rock

p :

Pore fluid pressure (Pa)

p 1 and p 2 :

Pressures applied over the inside surface radius r1 and the outside surface radius r2 of a hollow elastic cylindrical tube (Pa)

q :

Flowing fluid volumetric flow rate (m3/s)

r 1 :

Average internal radius of the bundle of elastic capillary tubes (m)

r 2 :

Average external radius of influence of the variation of the pressure inside the flow tube beyond which no deformation occurs (m)

R 2 :

Coefficients of regression, dimensionless

X:

Biot–Willis poroelastic coefficient, dimensionless

V 1 and V b :

Pore volume and bulk volume of porous rock (m3)

\( \alpha ,\beta \) :

Parameters

\( \sigma \) :

Effective stress (Pa)

\( \sigma_{\text{c}} \) :

Total confining stress (Pa)

\( \delta_{\text{r}} \) :

Radial displacement at any radius r (m)

\( \mu \) :

Fluid viscosity (Pa s)

\( \upsilon \) :

Poisson’s ration of the reservoir rock formation, dimensionless

\( \tau \) :

Tortuosity, dimensionless

ϕ :

Porosity of porous formation, fraction

ϕ o :

Reference porosity, fraction

References

  • Abdalrahman, T., Scheiner, S., Hellmich, C.: Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory. J. Theor. Biol. 365, 433–444 (2015)

    Article  Google Scholar 

  • Bernabé, Y.: The effective pressure law for permeability in Chelmsfordgranite and Barre granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 23(3), 267–275 (1986). https://doi.org/10.1016/0148-9062(86)90972-1

    Article  Google Scholar 

  • Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2):155–164 (1941). https://doi.org/10.1063/1.1712886

    Article  Google Scholar 

  • Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    Google Scholar 

  • Byerlee, J.D., Zoback, M.D.: Permeability and effective stress. AAPG Bull. 59(1), 154–158 (1975)

    Google Scholar 

  • Carman, P.C.: The determination of the specific surface of powder: I. J. Soc. Chem. Ind. 57, 225 (1937a)

    Google Scholar 

  • Carman, P.C.: Fluid flow through a granular bed. Trans. Inst. Chem. Eng. Lond. 15, 150–167 (1937b)

    Google Scholar 

  • Carman, P.C.: Flow of Gases Through Porous Media. Butterworths, London (1956)

    Google Scholar 

  • Civan, F.: Reservoir Formation Damage-Fundamentals, Modeling, Assessment, and Mitigation, 1st edn. Gulf Pub, Butterworth-Heinemann, Houston, Woburn (2000). ISBN 0-88415-301-0

    Google Scholar 

  • Civan, F.: Scale effect on porosity and permeability-kinetics, model, and correlation. AIChE J. 47(2), 271–287 (2001)

    Article  Google Scholar 

  • Civan, F.: Relating permeability to pore connectivity using a power-law flow unit equation. Petrophys. J. 43(6), 457–476 (2002)

    Google Scholar 

  • Civan, F.: Characterization of reservoir flow units based on a power-law equation of permeability obtained from an interacting bundle of leaky tubes model. SPE-187289-MS. The 2017 SPE Annual Technical Conference and Exhibition held in San Antonio, TX, 9–11 October 2017 (2017)

  • Civan, F.: Porous Media Transport Phenomena. Wiley, Hoboken (2011)

    Book  Google Scholar 

  • Civan, F.: Stress dependency of permeability represented by an elastic cylindrical pore-shell model: Comment on Zhu et al. (Transp Porous Med (2018) 122:235–252). Transp. Porous Media 127(3), 573–585 (2019). https://doi.org/10.1007/s11242-018-1213-0

    Article  Google Scholar 

  • Civan, F.: Compressibility, porosity, and permeability of shales involving stress shock and loading/unloading hysteresis. Paper SPE-195676-PA, SPE Journal, Society of Petroleum Engineers (2019b, accepted)

  • Gangi, A.F.: Variation of whole and fractured porous rock permeability with confining pressure. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15(5), 249–257 (1978)

    Article  Google Scholar 

  • Ghabezloo, S., Sulem, J., Guedon, S., Martineau, F.: Effective stress law for the permeability of a limestone. Int. J. Rock. Mech. Min. 46, 297–306 (2009)

    Article  Google Scholar 

  • Jaeger, J.C., Cook, N.G.W., Zimmerman, R.W.: Fundamentals of Rock Mechanics. Wiley, New York (2009)

    Google Scholar 

  • Jones, C., Somerville, J., Smart, B., Kirstetter, O., Hamilton, S., Edlmann, K.: Permeability prediction using stress sensitive petrophysical properties. Pet. Geosci. 7(2), 211–219 (2001)

    Article  Google Scholar 

  • Kozeny, J.: Uber Kapillare Leitung des Wasser im Boden. Sitzungsbericht der Akademie der Wissenschaften, Wien 136, 271–306 (1927)

    Google Scholar 

  • Lamé, G.: Leçons sur la Théorie Mathématique de l’Élasticité des Corps Solides. Bachelier, Paris (1852)

    Google Scholar 

  • Morris, J.P., Lomov, I.N., Glenn, L.A.: A constitutive model for stress-induced permeability and porosity evolution of Berea sandstone. J. Geophys. Res. 108(B10), 2485 (2003). https://doi.org/10.1029/2001JB000463

    Article  Google Scholar 

  • Morrow, C.A., Shi, L.Q., Byerlee, J.D.: Permeability of fault gouge under confining pressure and shear stress. J. Geophys. Res. Solid Earth 89, 3193–3200 (1984)

    Article  Google Scholar 

  • Nelson, R.: Fracture permeability in porous reservoirs: experimental and field approach. Dissertation for the Doctoral Degree. Texas A&M University, Texas (1975)

  • Seebyrger, D.A., Nur, A.A.: Pore space model for rock permeability and bulk modulus. J. Geophys. Res. 89(B1), 527–536 (1984)

    Article  Google Scholar 

  • Silvano, S.: Mathematical model of the Lame’ problem for simplified elastic theory applied to controlled-clearance pressure balances. arXiv ID: arXiv:1007.0813S, fulldisplay.datasource. Cornell University (2010).

  • Tan, X.-H., Li, X.-P., Liu, J.-Y., Zhang, L.-H., Fan, Z.: Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media. Phys. Lett. A 379, 2458–2465 (2015)

    Article  Google Scholar 

  • Wenlian, X., Tao, L., Min, L., Jinzhou, Z., Lingli, Z., Ling, L.: Evaluation of the stress sensitivity in tight reservoirs. Pet. Explor. Dev. 43(1), 115–123 (2016)

    Article  Google Scholar 

  • Yale, D.P.: Network Modeling of Flow, Storage, and Deformation in Porous Rocks. Stanford University, Stanford (1984)

    Google Scholar 

  • Yarushina, V.M., Bercovici, D., Oristaglio, M.L.: Rock deformation models and fluid leak-off in hydraulic fracturing. Geophys. J. Int. 194, 1514–1526 (2013). https://doi.org/10.1093/gji/ggt199

    Article  Google Scholar 

  • Yarushina, V.M., Podladchinov, Y.Y.: (De)compaction of porous viscoelastoplastic media: model formulation. J. Geophys. Res. Solid Earth 120, 4146–4170 (2014). https://doi.org/10.1002/2014JB011258

    Article  Google Scholar 

  • Zimmerman, R.W.: Compressibility of Sandstones, Developments in Petroleum Science, vol. 29. Elsevier, Amsterdam (1991)

    Google Scholar 

  • Zhu, S.Y., Du, Z.M., Li, C.L., et al.: A semi-analytical model for pressure-dependent permeability of tight sandstone reservoirs. Transp. Porous Med. 122(2), 235–252 (2018)

    Article  Google Scholar 

  • Zoback, M.D., Byerlee, J.D.: The effect of Microcrack Dilatancy on the Permeability of Westerly Granite. J. Geophys. Res. 80, 752–755 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruk Civan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Semi-analytical Formulation of Stress-Dependent Porosity and Permeability of Porous Rocks

Appendix: Semi-analytical Formulation of Stress-Dependent Porosity and Permeability of Porous Rocks

The stress dependence of porosity was approximated by the following empirical exponential decay equation by Zhu et al. (2018) and later by Civan (2019a). The linear dependence on the effective stress was expressed by a truncated Taylor series expansion and then using Eq. (10) as:

$$ \phi = \phi_{\text{o}} \exp \left[ { - c_{\text{p}} \left( {p_{\text{o}} - p} \right)} \right] \cong \phi_{\text{o}} \left[ {1 - c_{\text{p}} \left( {p_{\text{o}} - p} \right)} \right] = \phi_{\text{o}} \left[ {1 + c_{\text{p}} \left( {\frac{{\sigma_{\text{o}} - \sigma }}{\rm X}} \right)} \right] $$
(A-1)

Consequently, by applying Eq. (A-1), Civan (2019a) derived the following semi-analytic equation for stress-dependent permeability:

$$ \frac{{D^{{\prime }} + \sigma }}{{K^{{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0pt} 4}}} }} = a^{{\prime }} \sigma^{2} + b^{{\prime }} \sigma + c^{{\prime }} $$
(A-2)

where a′, b′, c′, and D′ are some parameters.

Here, it is shown that Eq. (A-1) can be derived also by neglecting several terms in Eq. (14) and applying Eqs. (2) and (3) as the following.

$$ \begin{aligned} \sigma & = p_{\text{o}} {\rm X} + \sigma_{\text{o}} - \frac{{E{\rm X}}}{1 - \upsilon }\left[ {\frac{{r_{0} r_{2}^{2} - r_{0} r_{1}^{2} - r_{1} r_{2}^{2} + r_{1}^{3} }}{{r_{1}^{3} + \left( {\frac{1 + \upsilon }{1 - \upsilon }} \right)r_{2}^{2} r_{1} }}} \right] \\ & \cong p_{\text{o}} {\rm X} + \sigma_{\text{o}} - \frac{{E{\rm X}}}{1 - \upsilon }\left[ {\frac{{r_{1}^{3} }}{{\left( {\frac{1 + \upsilon }{1 - \upsilon }} \right)r_{2}^{2} r_{1} }}} \right] = p_{\text{o}} {\rm X} + \sigma_{\text{o}} - \frac{{E{\rm X}\alpha^{2} }}{{\left( {1 + \upsilon } \right)r_{2}^{2} }}\phi \\ \end{aligned} $$
(A-3)

Solving Eq. (A-3) for porosity \( \phi \) yields the above given Eq. (A-1) as:

$$ \begin{aligned} & \phi = \frac{{p_{\text{o}} \left( {1 + \upsilon } \right)r_{2}^{2} }}{{E\alpha^{2} }}\left[ {1 + \frac{1}{{p_{\text{o}} }}\left( {\frac{{\sigma_{o} - \sigma }}{\rm X}} \right)} \right] = \phi_{\text{o}} \left[ {1 + c_{\text{p}} \left( {\frac{{\sigma_{\text{o}} - \sigma }}{\rm X}} \right)} \right] \\ & {\text{where }} \\ & \phi_{\text{o}} = \frac{{p_{\text{o}} \left( {1 + \upsilon } \right)r_{2}^{2} }}{{E\alpha^{2} }},\quad c_{\text{p}} = \frac{1}{{p_{\text{o}} }} \\ \end{aligned} $$
(A-4)

This exercise reveals that Eq. (A-1) involves a significant simplification compared to the full mechanistic model developed in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Civan, F. Stress-Dependent Porosity and Permeability of Porous Rocks Represented by a Mechanistic Elastic Cylindrical Pore-Shell Model. Transp Porous Med 129, 885–899 (2019). https://doi.org/10.1007/s11242-019-01311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01311-0

Keywords

Navigation