Skip to main content
Log in

Stress Dependency of Permeability Represented by an Elastic Cylindrical Pore-Shell Model: Comment on Zhu et al. (Transp Porous Med (2018) 122:235–252)

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Stress dependency of permeability of porous rocks is described by means of a theoretical elastic cylindrical pore-shell model. This model is developed based on a bundle of elastic capillary tubes representation of the preferential flow paths formed in heterogeneous porous rocks. The radial displacement caused in tubes by the pore fluid pressure applied over the surface of the elastic cylindrical flow tubes is expressed by a Lamé-type equation. The radial displacement is incorporated into the Kozeny–Carman relationship to determine the variation of the permeability of porous rocks by variation of the pore fluid pressure. The solution of this equation yields a semi-analytical equation which provides accurate correlations of the stress dependency of the permeability data of porous rocks. The errors associated with the previous formulation of this problem by Zhu et al. (Transp Porous Med 122:235–252, 2018) are explained in view of the present formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a, b, c :

Empirical parameters

aʹ, bʹ, cʹ, Dʹ:

Empirical parameters

A, B, D, C :

Empirical parameters

A 1, A b :

Pore and bulk cross-sectional areas of porous rock (m2)

E :

Young’s modulus (Pa)

K :

Intrinsic permeability of porous rock (m2)

K o :

Intrinsic permeability at a reference effective stress \( \sigma_{\text{o}} \) (m2)

L 1, L b :

Length of actual tortuous flow path and bulk length of porous rock (m)

n :

Number of flow paths formed in porous rock

p :

Pore fluid pressure (Pa)

p 1, p 2 :

Pressures applied over the inside surface of radius r1 and the outside surface of radius r2 of a hollow elastic cylindrical tube (Pa)

q :

Flowing fluid volumetric flow rate (m3/s)

r 1 :

Average internal radius of the bundle of elastic capillary tubes (m)

r 2 :

Average external radius of influence of the variation of the pressure inside the flow tube beyond which no deformation occurs (m)

R 2 :

Coefficients of regression, dimensionless

X :

Biot–Willis poroelastic coefficient, dimensionless

V 1, V b :

Pore volume and bulk volume of porous rock (m3)

\( \sigma \) :

Effective stress (Pa)

\( \sigma_{\text{c}} \) :

Total confining stress (Pa)

\( \delta_{r} \) :

Radial displacement at any radius r (m)

\( \mu \) :

Fluid viscosity (Pa s)

\( \upsilon \) :

Poisson’s ration of the reservoir rock formation, dimensionless

\( \tau \) :

Tortuosity, dimensionless

ϕ :

Porosity of porous formation, fraction

ϕ o :

Reference porosity, fraction

References

  • Abdalrahman, T., Scheiner, S., Hellmich, C.: Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory. J. Theor. Biol. 365, 433–444 (2015)

    Article  Google Scholar 

  • Bernabé, Y.: The effective pressure law for permeability in Chelmsford granite and Barre granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 23(3), 267–275 (1986). https://doi.org/10.1016/0148-9062(86)90972-1

    Article  Google Scholar 

  • Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941). https://doi.org/10.1063/1.1712886

    Article  Google Scholar 

  • Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    Google Scholar 

  • Carman, P.C.: The determination of the specific surface of powder: I. J. Soc. Chem. Ind. 57, 225 (1937a)

    Google Scholar 

  • Carman, P.C.: Fluid flow through a granular bed. Trans. Inst. Chem. Eng. Lond. 15, 150–167 (1937b)

    Google Scholar 

  • Carman, P.C.: Flow of gases through porous media. Butterworths, London (1956)

    Google Scholar 

  • Civan, F.: Reservoir Formation Damage-Fundamentals, Modeling, Assessment, and Mitigation, 1st edn, p. 742. Gulf Pub Co., Houston, TX (2000)

    Google Scholar 

  • Civan, F.: Scale effect on porosity and permeability- kinetics, model, and correlation. AIChE J. 47(2), 271–287 (2001)

    Article  Google Scholar 

  • Civan, F.: Relating permeability to pore connectivity using a power-law flow unit equation. Petrophys. J. 43(6), 457–476 (2002)

    Google Scholar 

  • Civan, F.: Characterization of reservoir flow units based on a power-law equation of permeability obtained from an interacting bundle of leaky tubes model. In: SPE-187289-MS, the 2017 SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, 9–11 October 2017

  • Gangi, A.F.: Variation of whole and fractured porous rock permeability with confining pressure. Int. J. Rock Mech. Mining Sci. Geomech. Abstracts 15(5), 249–257 (1978)

    Article  Google Scholar 

  • Ghabezloo, S., Sulem, J., Guedon, S., Martineau, F.: Effective stress law for the permeability of a limestone. Int. J. Rock. Mech. Min. 46, 297–306 (2009)

    Article  Google Scholar 

  • Jaeger, J.C., Cook, N.G.W., Zimmerman, R.W.: Fundamentals of Rock Mechanics. Wiley, New York (2009)

    Google Scholar 

  • Kozeny, J.: Uber Kapillare Leitung des Wasser im Boden. Sitzungsbericht der Akademie der Wissenschaften, Wien 136, 271–306 (1927)

    Google Scholar 

  • Lamé, G.: Leçons sur la Théorie Mathématique de l’Élasticité des Corps Solides. Bachelier, Paris (1852)

    Google Scholar 

  • Morris, J.P., Lomov, I.N., Glenn, L.A.: A constitutive model for stress-induced permeability and porosity evolution of Berea sandstone. J. Geophys. Res. 108(B10), 2485 (2003). https://doi.org/10.1029/2001JB000463

    Article  Google Scholar 

  • Morrow, C.A., Shi, L.Q., Byerlee, J.D.: Permeability of fault gouge under confining pressure and shear stress. J. Geophys. Res. Solid Earth 89, 3193–3200 (1984)

    Article  Google Scholar 

  • Nelson, R.: Fracture permeability in porous reservoirs: Experimental and field approach. Dissertation for the Doctoral Degree. Texas: Texas A&M University (1975)

  • Scheiner, S., Pivonka, P., Hellmich, C.: Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure. Biomech. Model. Mechanobiol. 15, 9–28 (2016). https://doi.org/10.1007/s10237-015-0704-y

    Article  Google Scholar 

  • Seebyrger, D.A., Nur, A.A.: Pore space model for rock permeability and bulk modulus. J. Geophys. Res. 89(B1), 527–536 (1984)

    Article  Google Scholar 

  • Silvano, S.: Mathematical model of the Lame’ Problem for Simplified Elastic Theory applied to Controlled-Clearance Pressure Balances, Arxiv ID: 2010arXiv1007.0813S, fulldisplay.datasource.Cornell University (2010)

  • Tan, X.-H., Li, X.-P., Liu, J.-Y., Zhang, L.-H., Fan, Z.: Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media. Phys. Lett. A 379, 2458–2465 (2015)

    Article  Google Scholar 

  • Wenlian, X., Tao, L., Min, L., Jinzhou, Z., Lingli, Z., Ling, L.: Evaluation of the stress sensitivity in tight reservoirs. Pet. Explor. Dev. 43(1), 115–123 (2016)

    Article  Google Scholar 

  • Yale, D.P.: Network modeling of flow, storage, and deformation in porous rocks. Stanford University, Stanford, California (1984)

    Google Scholar 

  • Yarushina, V.M., Bercovici, D., Oristaglio, M.L.: Rock deformation models and fluid leak-off in hydraulic fracturing. Geophys. J. Int. 194, 1514–1526 (2013). https://doi.org/10.1093/gji/ggt199

    Article  Google Scholar 

  • Yarushina, V.M., Podladchinov, Y.Y.: (De)compaction of porous viscoelastoplastic media: model formulation. J. Geophys. Res. Solid Earth (2014). https://doi.org/10.1002/2014jb011258

    Google Scholar 

  • Zimmerman, R.W.: Compressibility of Sandstones, Developments in Petroleum Science, vol. 29, p. 173. Elsevier Science Publishers B.V., Amsterdam (1991)

    Google Scholar 

  • Zhu, S.Y., Du, Z.M., Li, C.L., et al.: A semi-analytical model for pressure-dependent permeability of tight sandstone reservoirs. Transp. Porous Med. 122(2), 235–252 (2018)

    Article  Google Scholar 

  • Zoback, M.D., Byerlee, J.D.: The effect of microcrack dilatancy on the permeability of Westerly granite. J. Geophys. Res. 80, 752–755 (1975a)

    Article  Google Scholar 

  • Zoback, M.D., Byerlee, J.D.: Permeability and effective stress. AAPG Bull. 59(1), 154–158 (1975b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruk Civan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Definition of Coefficients and Calculation of Parameters

Appendix A: Definition of Coefficients and Calculation of Parameters

Definition of the coefficients A, B, C, and D and the calculation of parameters E,\( \upsilon \), cp, and po are described in the following. Substituting Eq. (11) into Eq. (10) yields:

$$ \begin{aligned} \frac{{r_{0} }}{{r_{1} }} & = \frac{{\left[ {\left( {\frac{1 - \upsilon }{{E\alpha \phi_{\text{o}} c_{p} }}} \right)\alpha \phi_{\text{o}} \left[ {1 - c_{p} \left( {p_{\text{o}} - p_{1} } \right)} \right] + \left( {\frac{1 + \upsilon }{{E\alpha \phi_{\text{o}} c_{p} }}} \right)} \right]\left[ {p_{\text{o}} - \left( {p_{\text{o}} - p_{1} } \right)} \right] + \left( {\frac{{1 - \alpha \phi_{\text{o}} }}{{\alpha \phi_{\text{o}} c_{p} }}} \right) + \left( {p_{\text{o}} - p_{1} } \right)}}{{\left[ {\left( {\frac{{1 - \alpha \phi_{\text{o}} }}{{\alpha \phi_{\text{o}} c_{p} }}} \right) + \left( {p_{\text{o}} - p_{1} } \right)} \right]}} \\ & = \frac{{\left( {\frac{1 - \upsilon }{E}} \right)\left( {p_{\text{o}} - p_{1} } \right)^{2} + \left[ {1 - \frac{1 - \upsilon }{{Ec_{p} }} - \frac{1 + \upsilon }{{E\alpha \phi_{\text{o}} c_{p} }} - \left( {\frac{1 - \upsilon }{E}} \right)p_{\text{o}} } \right]\left( {p_{\text{o}} - p_{1} } \right) + \frac{{1 - \alpha \phi_{o} }}{{\alpha \phi_{\text{o}} c_{p} }} + \left( {1 - \upsilon + \frac{1 + \upsilon }{{\alpha \phi_{\text{o}} }}} \right)\frac{{p_{\text{o}} }}{{Ec_{p} }}}}{{\left( {\frac{{1 - \alpha \phi_{o} }}{{\alpha \phi_{o} c_{p} }}} \right) + \left( {p_{o} - p_{1} } \right)}} \\ & = \frac{{A\left( {p_{\text{o}} - p_{1} } \right)^{2} + B\left( {p_{\text{o}} - p_{1} } \right) + C}}{{D + \left( {p_{\text{o}} - p_{1} } \right)}} \\ \end{aligned} $$
(A.1)

Comparison of coefficients in Eq.(A.1) gives the following relationships:

$$ D = \frac{{1 - \alpha \phi_{\text{o}} }}{{\alpha \phi_{\text{o}} c_{p} }},\,{\text{or}}\,{\text{solving}}\,{\text{for}}\,c_{p} = \frac{{1 - \alpha \phi_{\text{o}} }}{{\alpha \phi_{\text{o}} D}} $$
(A.2)
$$ A = \frac{1 - \upsilon }{E},\,{\text{solve}}\,{\text{for}}\,\frac{1 + \upsilon }{E} = A + \frac{2\upsilon }{E},\,{\text{or}}\,{\text{for}}\,E = \frac{1 - \upsilon }{A}\,{\text{after}}\,{\text{calculating}}\,\upsilon \,{\text{as}}\,{\text{follows}} $$
(A.3)
$$ \begin{aligned} B & = 1 - \frac{1 - \upsilon }{{Ec_{p} }} - \frac{1 + \upsilon }{{E\alpha \phi_{\text{o}} c_{p} }} - \left( {\frac{1 - \upsilon }{E}} \right)p_{\text{o}} = 1 - \frac{1 + \upsilon }{{E\alpha \phi_{\text{o}} c_{p} }} - \left( {\frac{1 - \upsilon }{E}} \right)\left( {p_{\text{o}} + \frac{1}{{c_{p} }}} \right) \\ & = 1 - \frac{1 + \upsilon }{{E\alpha \phi_{\text{o}} c_{p} }} - A\left( {p_{\text{o}} + \frac{1}{{c_{p} }}} \right) = 1 - \left( {\frac{1 + \upsilon }{1 - \upsilon }} \right)\frac{A}{{\alpha \phi_{\text{o}} c_{p} }} - A\left( {p_{\text{o}} + \frac{1}{{c_{p} }}} \right) \\ \end{aligned} $$
(A.4)

Solution of the above equation gives:

$$ \upsilon = \frac{{\frac{1 - B}{A} - p_{\text{o}} - \frac{1}{{c_{\text{p}} }} - \frac{1}{{\alpha \phi_{\text{o}} c_{\text{p}} }}}}{{\frac{1 - B}{A} - p_{\text{o}} - \frac{1}{{c_{\text{p}} }} + \frac{1}{{\alpha \phi_{\text{o}} c_{\text{p}} }}}} $$
(A.5)

Alternatively, consider

$$ \begin{aligned} & C = \frac{{1 - \alpha \phi_{\text{o}} }}{{\alpha \phi_{\text{o}} c_{\text{p}} }} + \left( {1 - \upsilon + \frac{1 + \upsilon }{{\alpha \phi_{\text{o}} }}} \right)\frac{{p_{\text{o}} }}{{Ec_{p} }} = D + \left( {1 - \upsilon + \frac{1 + \upsilon }{{\alpha \phi _{\text{o}} }}} \right)\frac{{p_{\text{o}} }}{{Ec_{p} }} = D + \left( {\frac{1 + \upsilon }{{E\alpha \phi _{\text{o}} c_{p} }}} \right)p_{\text{o}} + \frac{{Ap_{\text{o}} }}{{c_{p} }} \\ & \quad = D + \left( {\frac{1 + \upsilon }{1 - \upsilon }} \right)\frac{{Ap_{\text{o}} }}{{\alpha \phi _{\text{o}} c_{p} }} + \frac{{Ap_{\text{o}} }}{{c_{p} }} = D + \left[ {\left( {\frac{1 + \upsilon }{1 - \upsilon }} \right)\frac{1}{{\alpha \phi _{\text{o}} }} + 1} \right]\frac{{Ap_{\text{o}} }}{{c_{p} }},\,{\text{or}}\,{\text{rearranging}} \\ & \left[ {\frac{{\left( {C - D} \right)c_{p} }}{{Ap_{\text{o}} }} - 1} \right]\alpha \phi _{\text{o}} - 1 = \left[ {\frac{{\left( {C - D} \right)c_{p} }}{{Ap_{\text{o}} }} - 1} \right]\alpha \phi _{\text{o}} \upsilon + \upsilon = \left\{ {\left[ {\frac{{\left( {C - D} \right)c_{p} }}{{Ap_{\text{o}} }} - 1} \right]\alpha \phi _{\text{o}} + 1} \right\}\upsilon \\ \end{aligned} $$
(A.6)

Then, the solution of the above equation gives:

$$ \upsilon = \frac{{\left[ {\frac{{\left( {C - D} \right)c_{p} }}{{Ap_{\text{o}} }} - 1} \right]\alpha \phi_{\text{o}} - 1}}{{\left[ {\frac{{\left( {C - D} \right)c_{p} }}{{Ap_{\text{o}} }} - 1} \right]\alpha \phi_{\text{o}} + 1}} $$
(A.7)

Further,

$$ B = 1 - \frac{1 + \upsilon }{{E\alpha \phi_{\text{o}} c_{p} }} - A\left( {p_{\text{o}} + \frac{1}{{c_{p} }}} \right),\,{\text{solving}}\,{\text{for}}\,\frac{1 + \upsilon }{{E\alpha \phi_{\text{o}} c_{p} }} = 1 - B - A\left( {p_{\text{o}} + \frac{1}{{c_{p} }}} \right) $$
(A.8)

Substitute Eq.(A.8) into Eq.(A.6) to obtain the following equation to solve for po if it is not already known:

$$ \begin{aligned} C & = D + \left( {\frac{1 + \upsilon }{{E\alpha \phi_{\text{o}} c_{p} }}} \right)p_{\text{o}} + \frac{{Ap_{\text{o}} }}{{c_{p} }} = D + \left[ {1 - B - A\left( {p_{\text{o}} + \frac{1}{{c_{p} }}} \right)} \right]p_{\text{o}} + \frac{{Ap_{\text{o}} }}{{c_{p} }} \\ & = D + \left( {1 - B - Ap_{\text{o}} } \right)p_{\text{o}} \\ \end{aligned} $$
(A.9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Civan, F. Stress Dependency of Permeability Represented by an Elastic Cylindrical Pore-Shell Model: Comment on Zhu et al. (Transp Porous Med (2018) 122:235–252). Transp Porous Med 127, 573–585 (2019). https://doi.org/10.1007/s11242-018-1213-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1213-0

Keywords

Navigation