Skip to main content
Log in

Mathematical Modeling of Slurry Infiltration and Particle Dispersion in Saturated Sand

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper proposes a new computational method for the analysis of slurry infiltration in saturated sand considering the relationship among soil deformation, slurry seepage and particle dispersion. The nonlinear governing equations for slurry infiltration are derived, and the corresponding variational principles based on time increment are established. The finite element method is employed to solve the problem. The computational results are validated with the reported test data, which shows that this method is much better than the traditional Herzig method in predicting the particle deposition. The proposed method is demonstrated through an example of slurry infiltration in slurry trench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Note: test data are taken from by Alem et al. (2013)

Fig. 6

Note: test data are taken from by Alem et al. (2013)

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alem, A., Elkawafi, A., Ahfir, N.-D., Wang, H.: Filtration of kaolinite particles in a saturated porous medium: hydrodynamic effects. Hydrogeol. J. 21, 573–586 (2013)

    Article  Google Scholar 

  • Arab, D., Pourafshary, P., Ayatollahi, S.: Mathematical modeling of colloidal particles transport in the medium treated by nanofluids deep bed filtration approach. Transp. Porous Media 103(3), 401–419 (2014)

    Article  Google Scholar 

  • Babakhani, P., Fagerlund, F., Shamsai, A., et al.: Modified MODFLOW-based model for simulating the agglomeration and transport of polymer-modified Fe(0) nanoparticles in saturated porous media. Environ. Sci. Pollut. Res. (2015). https://doi.org/10.1007/s11356-015-5193-0

    Google Scholar 

  • Babakhani, P., Bridge, J., Doong, R., et al.: Parameterization and prediction of nanoparticle transport in porous media: a reanalysis using artificial neural network. Water Resour. Res. 53, 4564 (2017a)

    Article  Google Scholar 

  • Babakhani, P., Bridge, J., Doong, R.-A., Phenrat, T.: Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: a state-of-the-science review. Adv. Colloid Interface Sci. 246, 75–104 (2017b)

    Article  Google Scholar 

  • Bai, Y., Kong, X.-P., Liao, S.-M.: Research on dynamic formation mechanism of slurry membrane for slurry shield. Rock Soil Mech. 31(Supp. 2), 19–24 (2010)

    Google Scholar 

  • Bayat, A.E., Junin, R., Derahman, M.N., Samad, A.A.: TiO2 nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions. Chemosphere 134, 7–15 (2015)

    Article  Google Scholar 

  • Benamar, A., Ahfir, N.-D., Wang, H.Q., Alem, A.: Particle transport in a saturated porous medium: pore structure effects. C.R. Geosci. 339(10), 674–681 (2007)

    Article  Google Scholar 

  • Bennacer, L., Ahfir, N.-D., Bouanani, A., Alem, A., Wang, H.: Suspended particles transport and deposition in saturated granular porous medium: particle size effects. Transp. Porous Media 100(3), 377–392 (2013)

    Article  Google Scholar 

  • Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  • Bolster, C.H., Mills, A.L., Hornberger, G.M., Herman, J.S.: Spatial distribution of deposited bacteria following miscible displacement experiments in intact cores. Water Resour. Res. 35(6), 1797–1807 (1999)

    Article  Google Scholar 

  • Bradford, S.A., Torkzaban, S.: Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models. Vadose Zone J. 7(2), 667–681 (2008)

    Article  Google Scholar 

  • Bradford, S.A., Yates, S.R., Bettahar, M., Simunek, J.: Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour. Res. 38(12), 63-1–63-12 (2002)

    Article  Google Scholar 

  • Bradford, S.A., Simunek, J., Bettahar, M., Van Genuchten, M.T., Yates, S.R.: Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ. Sci. Technol. 37(10), 2242–2250 (2003)

    Article  Google Scholar 

  • Broere, W: Influence of excess pore pressures on the stability of the tunnel face. In: Saveur, J. (ed.) (Re)Claiming the Underground Space, vols. 1 and 2, Proceedings of the 29th ITA World Tunnelling Congress, 12–17 Apr 2003, pp. 759–765

  • Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937)

    Google Scholar 

  • Carman, P.C.: Fundamental principles of industrial filtration (a critical review of present knowledge). Inst. Chem. Eng. Trans. 16(a), 168–188 (1938)

    Google Scholar 

  • Cividini, A.: An experimental and numerical study of the low-pressure grouting of granular soils by diluted chemical solutions. Int. J. Geomech. 1(4), 415–439 (2001)

    Article  Google Scholar 

  • Cividini, A., Bonomi, S., Vignati, G.C., Gioda, G.: Seepage induced erosion in granular soil and consequent settlements. ASCE Int. J. Geomech. 9(4), 187–194 (2009)

    Article  Google Scholar 

  • Darby, J.L., Lawler, D.F.: Ripening in depth filtration: effect of particle size on removal and head loss. Environ. Sci. Technol. 24, 1069–1079 (1990)

    Article  Google Scholar 

  • De Marsily, G.: Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Academic Press, Orlando (1986)

    Google Scholar 

  • De Repentigny, C., Courcelles, B.: A simplified model to predict clogging of reactive barriers. Environ. Geotech. 3(3), 166–177 (2016)

    Article  Google Scholar 

  • Dlugy, C.L.: Studies of inactivation and transport of viruses in porous media with new nanoscale tool-labeled bacteriophages. M.Sc. thesis, Unit of Environmental Engineering, Ben-Gurion University of the Negev (2008)

  • Elimelech, M., Gregory, J., Jia, X., Williams, R.R.: Particle Deposition and Aggregation: Measurement, Modelling and Simulation, p. 440. Butterworth-Heinemann, Oxford (1995)

    Google Scholar 

  • Gitis, V.: Removal of oocysts of Cryptosporidium parvum by rapid sand filtration. Annual Project Report, IT Corporation for U.S. EPA, Contract No. 68-C-99-211 (2001)

  • Han, X.-R., Zhu, W., Liu, Q.-W., Zhong, X.-C., Min, F.-L.: Influence of slurry property on filter-cake quality on working face of slurry shield. Rock Soil Mech S1, 288–292 (2008)

    Google Scholar 

  • Herzig, J.P., Leclerc, D.M., Le Goff, P.: Flow of suspension through porous media: application to deep bed filtration. Ind. Eng. Chem. 62, 8–35 (1970)

    Article  Google Scholar 

  • Hueckel, T., Hu, L.B.: Feedback mechanisms in chemomechanical multi-scale modeling of soil and sediment compaction. Comput. Geotech. 36(6), 934–943 (2009)

    Article  Google Scholar 

  • Jaime, P., Susana, L.-Q.: Displacement based coupled model for unconfined seepage problems applied to the Gasset Dam (Ciudad Real, Spain). Eng. Geol. 137–138, 64–73 (2012)

    Google Scholar 

  • Kehat, E., Lin, A., Kaplan, A.: Clogging of filter media. Ind. Eng. Chem. Process Des. Dev. 6(1), 48–55 (1967)

    Article  Google Scholar 

  • Kretzschmar, R.: Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 66, 121–193 (1999)

    Article  Google Scholar 

  • Krom, A.H.M., Koers, R.W.J., Bakker, A.: Hydrogen transport near a blunting crack tip. J. Mech. Phys. Solids 47, 971–992 (1999)

    Article  Google Scholar 

  • Lee, I.M., Lee, S., Choi, K.H., Reddi, L.N.: Effect of slurry clogging phenomena on the face stability of slurry-shield tunnels. Geotechnical aspects of underground construction in soft ground. In: 5th International Conference on Geotechnical Aspects of Underground Construction in Soft Ground, 15–17 June 2005, pp. 245–251

  • Lee, J., Koplik, J.: Network model for deep bed filtration. Phys. Fluids 13, 1076–1086 (2001)

    Article  Google Scholar 

  • Li, Y.-C.: Finite element analysis for a finite conductivity fracture in an infinite poroelastic medium. Int. J. Numer. Anal. Methods Geomech. 23, 187–215 (1999)

    Article  Google Scholar 

  • Liu, X.Y., Yuan, D.J.: An in situ slurry fracturing test for slurry shield tunneling. J. of Zhejiang Univ. Sci. 15(7), 465–481 (2014)

    Article  Google Scholar 

  • Liu, C., Sun, J., Zhao, Z., Zhao, L.-Z.: Two-dimensional theoretical analysis of slurry membrane formation process in slurry shield. Rock Soil Mech. 34(6), 1593–1597 (2013)

    Google Scholar 

  • Maroudas, A., Eisenklam, P.: Clarification of suspensions: a study of particle deposition in granular media: part I—some observations on particle deposition. Chem. Eng. Sci. 20(10), 867–873 (1965)

    Article  Google Scholar 

  • Masciopinto, C., Mantia, R.L., Chrysikopoulos, C.V.: Fate and transport of pathogens in a fractured aquifer in the Salento area, Italy. Water Resour. Res. 44(1), W01404 (2008)

    Article  Google Scholar 

  • McDowell-Boyer, L.M., Hunt, J.R., Sitar, N.: Particle transport through porous media. Water Resour. Res. 22(13), 1901–1921 (1986)

    Article  Google Scholar 

  • Min, F., Zhu, W., Han, X.: Filter cake formation for slurry shield tunneling in highly permeable sand. Tunn. Undergr. Space Technol. 38, 423–430 (2013)

    Article  Google Scholar 

  • Moghadasi, J., Muller-Steinhagen, H., Jamialahmadi, M., Sharif, A.: Theoretical and experimental study of particle movement and deposition in porous media during water injection. J. Petrol. Sci. Eng. 43, 163–181 (2004)

    Article  Google Scholar 

  • Pedro, N., Susana, L.-Q.: Generalized unconfined seepage flow model using displacement based formulation. Eng. Geol. 166(8), 140–151 (2013)

    Google Scholar 

  • Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Lowry, G.V.: Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. J. Contam. Hydrol. 118(3–4), 152–164 (2010a)

    Article  Google Scholar 

  • Phenrat, T., Song, J., Cisneros, C., Schoenfelder, D., Tilton, R., Lowry, G.: Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Environ. Sci. Technol. 44(12), 4531–4538 (2010b)

    Article  Google Scholar 

  • Reddi, L.N., Xiao, M., Malay, G.H., Lee, I.M.: Physical clogging of soil filters under constant flow rate versus constant head. Can. Geotech. J. 42, 804–811 (2005)

    Article  Google Scholar 

  • Saleh, N., Kim, H.-J., Phenrat, T., Matyjaszewski, K., Tilton, R.D., Lowry, G.V.: Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ. Sci. Technol. 42, 3349–3355 (2008)

    Article  Google Scholar 

  • Santos, A., Araujo, J.A.: Modeling deep bed filtration considering limited particle retention. Transp. Porous Media 108(3), 697–712 (2015)

    Article  Google Scholar 

  • Santos, A., Bedrikovetsky, P., Fontoura, S.: Analytical micro model for size exclusion: pore blocking and permeability reduction. J. Membr. Sci. 308(1), 115–127 (2008)

    Article  Google Scholar 

  • Seetha, N., Mohan Kumar, M.S., Hassanizadeh, S.M., Raoof, A.: Virus-sized colloid transport in a single pore: model development and sensitivity analysis. J. Contam. Hydrol. 164, 163–180 (2014)

    Article  Google Scholar 

  • Thullner, M., Zeyer, Z., Kinzelbach, W.: Influence of microbial growth on hydraulic properties of pore networks. Transp. Porous Media 49, 99–122 (2001)

    Article  Google Scholar 

  • Tobiason, J.E.: Chemical effects on the deposition of non-Brownian particles. Colloids Surf. 39(1), 53–75 (1989)

    Article  Google Scholar 

  • Tobiason, J.E., Vigneswaran, B.: Evaluation of a modified model for deep bed filtration. Water Res. 28(2), 335–342 (1994)

    Article  Google Scholar 

  • Tong, M., Johnson, W.P.: Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity. Environ. Sci. Technol. 40, 7725–7773 (2006)

    Article  Google Scholar 

  • Zienkiewicz, O.C., Shiomi, T.: Dynamic behaviour of saturated porous media: the generalized Biot formulation and its numerical solution. Int. J. Numer. Anal. Methods Geomech. 8, 71–96 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Zhang, X., Wu, D. et al. Mathematical Modeling of Slurry Infiltration and Particle Dispersion in Saturated Sand. Transp Porous Med 124, 91–116 (2018). https://doi.org/10.1007/s11242-018-1054-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1054-x

Keywords

Navigation