Skip to main content
Log in

Mathematical Modeling of Colloidal Particles Transport in the Medium Treated by Nanofluids: Deep Bed Filtration Approach

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A deep bed filtration model has been developed to quantify the effect of nanoparticles (NPs) on mitigating fines migration in porous media. The filtration coefficients representing the total kinetics of particles capture were obtained by fitting the model to the laboratory data. Based on the optimum filtration coefficients, the model was utilized to history match the particle concentration breakthrough profiles observed in twelve core flood tests. In the flooding experiments, the effect of five types of metal oxide NPs, \(\upgamma \hbox {-Al}_{2}\hbox {O}_{3}\), CuO, MgO, \(\hbox {SiO}_{2}\), and ZnO, on migrating fines were investigated. In each test, a stable suspension was injected into the already NP-treated core and effluents’ fines concentration was measured based on turbidity analysis. In addition, zeta potential analysis was done to obtain the surface charge (SC) of the NP-treated medium. It was found that the presence of NPs on the medium surface results in SC modification of the bed and as a result, enhances the filter performance. Furthermore, the ionic strength of the nanofluid was recognized as an important parameter which governs the capability of NPs to modify the SC of the bed. The remedial effect of NPs on migrating fines is quantitatively explained by the matched filtration coefficients. The SC of the medium soaked by \(\upgamma \hbox {-Al}_{2}\hbox {O}_{3}\) nanofluid is critically increased; therefore, the matched filtration coefficient is of remarkably high value and as a result, the treated medium tends to adsorb more than 70 % of suspended particles. The predicted particle concentration breakthrough curves well matched with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(C\) :

Suspended particle concentration (NTU)

\(D\) :

Diffusion (dispersion) coefficient (\(\hbox {L}^{2}\hbox { T}^{-1}\))

F:

Defined as \(\lambda /\lambda _{0}\)

\(i\) :

Index of summation existing in Eq. 11

\(j\) :

Index of summation existing in Eq. 14

\(K_{i}\) :

Matching parameter

\(L\) :

Filter depth (L)

\(M\) :

Upper bound of the summation existing in Eq. 14

\(n\) :

Upper bound of the summation existing in Eq. 11

\(t\) :

Time (T)

\(u_\mathrm{s}\) :

Superficial velocity (\(\hbox {LT}^{-1}\))

\(z\) :

Axial distance (L)

\(\theta \) :

Corrected time defined by Eq. 3

\(\lambda \) :

Filtration coefficient (\(\hbox {cm}^{-1}\))

\(\lambda _{0}\) :

Initial filtration coefficient (\(\hbox {cm}^{-1}\))

\(\sigma \) :

Concentration of retained fine particles (NTU)

\(\phi \) :

Porosity

\(\psi \) :

An objective function defined by Eq. 14

in:

Influent

eff:

Effluent

exp:

Experiment

References

  • Ahfir, N.D., Benamar, A., Alem, A., Wang, H.: Influence of internal structure and medium length on transport and deposition of suspended particles: a laboratory study. Transp. Porous Media 76, 289–307 (2009)

    Article  Google Scholar 

  • Ahmadi, M., Habibi, A., Pourafshary, P., Ayatollahi, S.: Zeta-potential investigation and experimental study of nanoparticles deposited on rock surface to reduce fines migration. SPE-142633-PA. SPE J. (2013). doi:10.2118/142633-PA

  • Arab, D., Pourafshary, P., Ayatollahi, S., Habibi, A.: Remediation of colloid-facilitated contaminant transport in saturated porous media treated by nanoparticles. Int. J. Environ. Sci. Technol. (2013). doi:10.1007/s13762-013-0311-3

  • Ayatollahi, S., Zerafat, M.M.: Nanotechnology -assisted EOR techniques: new solutions to old challenges, SPE 157094, presented at the SPE international oilfield nanotechnology conference, Noordwijk, 12–14 June (2012)

  • Bai, R., Tien, C.: Effect of deposition in deep-bed filtration: determination and search of rate parameters. J. Colloid Interface Sci. 231, 299–311 (2000)

    Article  Google Scholar 

  • Baird, J.C., Walz, J.Y.: The effects of added nanoparticles on aqueous kaolinite suspensions II. Rheological effects. J. Colloid Interface Sci. 306, 411–420 (2007)

    Article  Google Scholar 

  • Bedrikovetsky, P., Siqueira, F.D., Furtado, C.A., Souza, A.L.S.: Modified particle detachment model for colloidal transport in porous media. Transp. Porous Media 86, 353–383 (2011)

    Article  Google Scholar 

  • Bedrikovetsky, P., Zeinijahromi, A., Siqueira, F.D., Furtado, C.A., Souza, A.L.S.: Particle detachment under velocity alternation during suspension transport in porous media. Transp. Porous Media 91, 173–197 (2012)

    Article  Google Scholar 

  • Belcher, C., Seth, K., Hollier, R., Paternostro, B.: Maximizing production life with the use of nanotechnology to prevent fines migration, SPE 132152, presented at the international oil and gas conference and exhibition in China, Beijing, 8–10 June (2010)

  • Boek, E.S., Hall, C., Tardy, P.M.J.: Deep bed filtration modelling of formation damage due to particulate invasion from drilling fluids. Transp. Porous Media 91, 479–508 (2012)

    Article  Google Scholar 

  • Bradford, S.A., Simunek, J., Bettahar, M., van Genuchten, M.T., Yates, S.R.: Modeling colloid attachment, straining, and exclusion in saturated porous media. J. Environ. Sci. Technol. 37, 2242–2250 (2003)

    Article  Google Scholar 

  • Civan, F.: Reservoir Formation Damage. Fundamentals, Modeling, Assessment, and Mitigation, 2nd edn. Gulf Professional Publishing, Burlington, MA (2007)

    Google Scholar 

  • Civan, F.: Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport. Transp. Porous Media 85, 233–258 (2010)

    Article  Google Scholar 

  • Elimelech, M., Jia, X., Gregory, J., Williams, R.: Particle Deposition and Aggregation: Measurement, Modelling, and Simulation (Colloid and Surface Engineering). Butterworth-Heinemann, Oxford (1998)

    Google Scholar 

  • Gravelle, A., Peysson, Y., Tabary, R., Egermann, P.: Experimental investigation and modelling of colloidal release in porous media. Transp. Porous Media 88, 441–459 (2011)

    Article  Google Scholar 

  • Habibi, A., Ahmadi, M., Pourafshary, P., Ayatollahi, S., Al-Wahaibi, Y.: Reduction of fines migration by nanofluids injection: an experimental study. SPE J. 18, 309–318 (2013). doi:10.2118/144196-PA

    Article  Google Scholar 

  • Hibbeler, J., Garcia, T., Chavez, N.: An integrated long-term solution for migratory fines damage, SPE 81017, presented at the SPE latin American and Caribbean petroleum engineering conference, Port-of-Spain, Trinidad and Tobago, 27–30 April (2003)

  • Huang, T., Crews, J.B., Willingham, J.R.: Nanoparticles for formation fines fixation and improving performance of surfactant structure fluids, SPE 12414, presented at the international petroleum technology conference, Kuala Lumpur, Malaysia, 3–5 Dec (2008a)

  • Huang, T., Crews, J.B., Willingham, J.R.: Using nanoparticle technology to control fine migration, SPE 115384, presented at the SPE annual technical conference and exhibition, Denver, Colorado, 21–24 Sep (2008b)

  • Huang, T., Evans, B.A., Crews, J.B., Belcher, C.K.: Field case study on formation fines control with nanoparticles in offshore applications, SPE 135088, presented at the SPE annual technical conference and exhibition, Florence, Italy, 19–22 Sept (2010)

  • Iwasaki, T.: Some notes on sand filtration. J. Am. Water Works Assoc. 29, 1591–1602 (1937)

    Google Scholar 

  • Johnson, P.R., Elimelech, M.: Dynamics of colloid deposition in porous media: blocking based on random sequential adsorption. Langmuir 11, 801–812 (1995)

    Article  Google Scholar 

  • Ju, B., Fan, T., Wang, X., Qiu, X.: A new simulation framework for predicting the onset and effects of fines mobilization. Transp. Porous Media 68, 265–283 (2007)

    Article  Google Scholar 

  • Jung, Y., Tien, C.: Increase in collector efficiency due to deposition in polydispersed granular filtration-an experimental study. J. Aerosol Sci. 23, 525–537 (1992)

    Article  Google Scholar 

  • Khilar, K., Fogler, S.: Migration of Fines in Porous Media. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  • Kia, S.F., Fogler, H.S., Reed, M.G., Vaidya, R.N.: Effect of salt composition on clay release in Berea sandstones. SPE Prod. Eng. 2, 277–283 (1987)

    Google Scholar 

  • Liu, D., Johnson, P.R., Elimelech, M.: Colloid deposition dynamics in flow through porous media: role of electrolyte concentration. Environ. Sci. Technol. 29, 2963–2973 (1995)

    Article  Google Scholar 

  • Maghrebi, M.J., Nazari, M., Armaghani, T.: Forced convection heat transfer of nanofluids in a porous channel. Transp. Porous Media 93, 401–413 (2012)

    Article  Google Scholar 

  • Maghzi, A., Mohebbi, A., Kharrat, R., Ghazanfari, M.H.: Pore-scale monitoring of wettability alteration by silica nanoparticles during polymer flooding to heavy oil in a five-spot glass micromodel. Transp. Porous Media 87, 653–664 (2011)

    Article  Google Scholar 

  • Pourafshary, P., Azimpour, S.S., Motamedi, P., Samet, M., Taheri, S.A., Bargozin, H., Hendi, S.S.: Priority assessment of investment in development of nanotechnology in upstream petroleum industry, SPE 126101, presented at the SPE Saudi Arabia section technical symposium, AlKhobar, Saudi Arabia, 9–11 May (2009)

  • Rahbar, M., Ayatollahi, S., Ghatee, M.H.: The roles of nano-scale intermolecular forces on the film stability during wettability alteration process of the oil reservoir rocks, SPE 132616, presented at the SPE trinidad and tobago energy resources conference, Port-of- Spain, Trinidad and Tobago, 27–30 June (2010)

  • Rege, S.D., Fogler, H.S.: A network model for deep bed filtration of solid particles and emulsion drops. AIChE J. 34(11), 1761–1772 (1988)

    Article  Google Scholar 

  • Rodriquez, E., Roberts, M.R., Yu, H., Huh, C., Bryant, S.L.: Enhanced migration of surface-treated nanoparticles in sedimentary rocks, SPE 124418, presented at the SPE annual technical conference and exhibition, New Orleans, Louisiana, 4–7 Oct (2009)

  • Schembre, J.M., Kovscek, A.R.: Thermally induced fines mobilization: its relationship to wettability and formation damage, SPE 86937, presented at the SPE international thermal operations and heavy oil symposium and western regional meeting, California, 16–18 March (2004)

  • Schramm, L.L.: Suspensions: Fundamental and Applications in the Petroleum Industry (Advances in Chemistry Series). American Chemical Society, Washington, DC (1996)

    Book  Google Scholar 

  • Sharma, M.M., Yortsos, Y.C.: A network model for deep bed filtration processes. AIChE J. 33(10), 1644–1653 (1987)

    Article  Google Scholar 

  • Tien, C., Ramarao, B.V.: Granular Filtration of Aerosols and Hydrosols, 2nd edn. Butterworth-Heinemann, Oxford (2007)

    Google Scholar 

  • Timofeeva, E.V., Moravek, M.R., Singh, D.: Improving the heat transfer efficiency of synthetic oil with silica nanoparticles. J. Colloid Interface Sci. 364, 71–79 (2011)

    Article  Google Scholar 

  • Tufenkji, N.: Colloid and microbe migration in granular experiments: a discussion of modelling methods. In: Frimmel, F.H., von der Kammer, F., Flemming, F.-C. (eds.) Colloidal Transport in Porous Media, pp. 119–142. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Vadasz, P.: Nanofins as a means of enhancing heat transfer: leading order results. Transp. Porous Media 89, 165–183 (2011)

    Article  Google Scholar 

  • Vigneswaran, S., Chang, J.S.: Experimental testing of mathematical models describing the entire cycle of filtration. Water Res. 23, 1413–1421 (1989)

    Article  Google Scholar 

  • Wong, R.C.K., Mettananda, D.C.A.: Permeability reduction in Qishn sandstone specimens due to particle suspension injection. Transp. Porous Media 81, 105–122 (2010)

    Article  Google Scholar 

  • Zamani, A., Maini, B.: Flow of dispersed particles through porous media-Deep bed filtration. J. Petrol. Sci. Eng. 69, 71–88 (2009)

    Article  Google Scholar 

  • Zamani, A., Maini, B., Pereira-Almao, P.: Experimental study on transport of ultra-dispersed catalyst particles in porous media. Energ. Fuel 24, 4980–4988 (2010)

    Article  Google Scholar 

  • Zhou, Z.J., Gunter, W.O., Jonasson, R.G.: Controlling formation damage using clay stabilizers: a review, SPE 95–71, presented at the annual technical meeting, Calgary, Alberta, 7–9 June (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Pourafshary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arab, D., Pourafshary, P. & Ayatollahi, S. Mathematical Modeling of Colloidal Particles Transport in the Medium Treated by Nanofluids: Deep Bed Filtration Approach. Transp Porous Med 103, 401–419 (2014). https://doi.org/10.1007/s11242-014-0308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0308-5

Keywords

Navigation