Skip to main content
Log in

Thermal Performance Evaluation of a Double-Tube Heat Exchanger Partially Filled with Porous Media Under Turbulent Flow Regime

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Turbulent flow and heat transfer in a counterflow double-tube heat exchanger partially filled with metal foam have been investigated numerically in the present study. The flow regime is considered to be turbulent in both the porous media and clear flow regions. Forchheimer-extended Darcy and local thermal equilibrium equations are utilized to simulate fluid flow and heat transfer inside porous layer. Also, a modified \(k-\varepsilon \) model is used to consider intra-pore level of turbulence within metal foam. Two different configurations of porous insert are considered in order to investigate the heat transfer enhancement and pressure drop, resulting from inserting porous media in double-tube heat exchangers. The effects of porous layer diameter, Darcy number and porous material thermal conductivity on the overall heat transfer coefficient of heat exchanger are investigated. The results exhibit the high amount of turbulent kinetic energy inside porous layer that supports the use of turbulence equations inside the porous region. Finally, a performance evaluation criterion is defined which enables one to establish the optimum porous media characteristics in double-tube heat exchangers in terms of thermal performance and pumping power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Alhusseny, A., Turan, A., Nasser, A.: Rotating metal foam structures for performance enhancement of double-pipe heat exchangers. Int. J. Heat Mass Transf. 105, 124–139 (2017)

    Article  Google Scholar 

  • Alkam, M., Al-Nimr, M.: Improving the performance of double-pipe heat exchangers by using porous substrates. Int. J. Heat Mass Transf. 42(19), 3609–3618 (1999)

    Article  Google Scholar 

  • Anderson, T.B., Jackson, R.: Fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fundam. 6(4), 527–539 (1967)

    Article  Google Scholar 

  • Breugem, W., Boersma, B.: Direct numerical simulations of turbulent flow over a permeable wall using a direct and a continuum approach. Phys. Fluids 17(2), 025103 (2005)

    Article  Google Scholar 

  • Calmidi, V., Mahajan, R.: The effective thermal conductivity of high porosity fibrous metal foams. J. Heat Transf. 121(2), 466–471 (1999)

    Article  Google Scholar 

  • Cekmer, O., Mobedi, M., Ozerdem, B., Pop, I.: Fully developed forced convection in a parallel plate channel with a centered porous layer. Transp. Porous Media 93(1), 179–201 (2012)

    Article  Google Scholar 

  • Chan, H.-C., Huang, W., Leu, J.-M., Lai, C.-J.: Macroscopic modeling of turbulent flow over a porous medium. Int. J. Heat Fluid Flow 28(5), 1157–1166 (2007)

    Article  Google Scholar 

  • Chen, X., Tavakkoli, F., Vafai, K.: Analysis and characterization of metal foam-filled double-pipe heat exchangers. Numer. Heat Transf. Part A Appl. 68(10), 1031–1049 (2015)

    Article  Google Scholar 

  • Dehghan, M.: Effects of heat generations on the thermal response of channels partially filled with non-Darcian porous materials. Transp. Porous Media 110(3), 461–482 (2015)

    Article  Google Scholar 

  • De Lemos, M.J.: Turbulence in Porous Media: Modeling and Applications. Elsevier, New York (2012)

    Google Scholar 

  • Du, Y., Qu, Z., Zhao, C.-Y., Tao, W.: Numerical study of conjugated heat transfer in metal foam filled double-pipe. Int. J. Heat Mass Transf. 53(21), 4899–4907 (2010)

    Article  Google Scholar 

  • Dybbs, A., Edwards, R.: A new look at porous media fluid mechanics—Darcy to turbulent. In: Bear, J., Corapcioglu M. Y., (eds.) Fundamentals of Transport Phenomena in Porous Media. NATO ASI Series. pp. 199–256. Martinus Nijhoff Publ, Dordrecht (1984)

  • Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2012)

    Google Scholar 

  • Jouybari, N.F., Maerefat, M., Nimvari, M.E.: A macroscopic turbulence model for reacting flow in porous media. Transp. Porous Media 106(2), 355–381 (2015)

    Article  Google Scholar 

  • Kuznetsov, A.: Numerical modeling of turbulent flow in a composite porous/fluid duct utilizing a two-layer k-\(\varepsilon \) model to account for interface roughness. Int. J. Therm. Sci. 43(11), 1047–1056 (2004)

    Article  Google Scholar 

  • Lu, W., Zhao, C., Tassou, S.: Thermal analysis on metal-foam filled heat exchangers. Part I: metal-foam filled pipes. Int. J. Heat Mass Transf. 49(15), 2751–2761 (2006)

    Article  Google Scholar 

  • Mahdavi, M., Saffar-Avval, M., Tiari, S.: Entropy generation and heat transfer numerical analysis in pipes partially filled with porous medium. Int. J. Heat Mass Transf. 79, 496–506 (2014)

    Article  Google Scholar 

  • Mahmoudi, Y., Karimi, N.: Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition. Int. J. Heat Mass Transf. 68, 161–173 (2014)

    Article  Google Scholar 

  • Nakayama, A., Kuwahara, F.: A macroscopic turbulence model for flow in a porous medium. J. Fluids Eng. 121(2), 427–433 (1999)

    Article  Google Scholar 

  • Nimvari, M., Maerefat, M., El-Hossaini, M.: Numerical simulation of turbulent flow and heat transfer in a channel partially filled with a porous media. Int. J. Therm. Sci. 60, 131–141 (2012)

    Article  Google Scholar 

  • Nimvari, M.E., Jouybari, N.F.: Investigation of turbulence effects within porous layer on the thermal performance of a partially filled pipe. Int. J. Therm. Sci. 118, 374–385 (2017)

    Article  Google Scholar 

  • Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press, Boca Raton (1980)

    Google Scholar 

  • Qu, Z., Xu, H., Tao, W.: Fully developed forced convective heat transfer in an annulus partially filled with metallic foams: an analytical solution. Int. J. Heat Mass Transf. 55(25), 7508–7519 (2012)

    Article  Google Scholar 

  • Russo, F., Basse, N.Y.: Scaling of turbulence intensity for low-speed flow in smooth pipes. Flow Meas. Instrum. 52, 101–114 (2016)

    Article  Google Scholar 

  • Saito, M.B., de Lemos, M.J.: A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous media. Int. J. Heat Mass Transf. 53(11), 2424–2433 (2010)

    Article  Google Scholar 

  • Shirvan, K.M., Ellahi, R., Mirzakhanlari, S., Mamourian, M.: Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow. Appl. Therm. Eng. 109, 761–774 (2016)

    Article  Google Scholar 

  • Shirvan, K.M., Mirzakhanlari, S., Kalogirou, S.A., Öztop, H.F., Mamourian, M.: Heat transfer and sensitivity analysis in a double pipe heat exchanger filled with porous medium. Int. J. Therm. Sci. 121, 124–137 (2017)

    Article  Google Scholar 

  • Silva, R.A., De Lemos, M.J.: Turbulent flow in a composite channel. Int. Commun. Heat Mass Transf. 38(8), 1019–1023 (2011)

    Article  Google Scholar 

  • Slattery, J.C.: Flow of viscoelastic fluids through porous media. AIChE J. 13(6), 1066–1071 (1967)

    Article  Google Scholar 

  • Targui, N., Kahalerras, H.: Analysis of fluid flow and heat transfer in a double pipe heat exchanger with porous structures. Energy Convers. Manag. 49(11), 3217–3229 (2008)

    Article  Google Scholar 

  • Targui, N., Kahalerras, H.: Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow. Energy Convers. Manag. 76, 43–54 (2013)

    Article  Google Scholar 

  • Teamah, M.A., El-Maghlany, W.M., Khairat Dawood, M.M.: Numerical simulation of laminar forced convection in horizontal pipe partially or completely filled with porous material. Int. J. Therm. Sci. 50(8), 1512–22 (2011)

    Article  Google Scholar 

  • Ucar, E., Mobedi, M., Pop, I.: Effect of an inserted porous layer located at a wall of a parallel plate channel on forced convection heat transfer. Transp. Porous Media 98(1), 35–57 (2013)

    Article  Google Scholar 

  • Vafai, K., Kim, S.-J.: Analysis of surface enhancement by a porous substrate. J. Heat Transf. 112(3), 700–706 (1990)

    Article  Google Scholar 

  • Wang, B., Hong, Y., Hou, X., Xu, Z., Wan, P., Fang, X., Ruan, X.: Numerical configuration design and investigation of heat transfer enhancement in pipes filled with gradient porous materials. Energy Convers. Manag. 105, 206–215 (2015)

    Article  Google Scholar 

  • Webb, R., Eckert, E.: Application of rough surfaces to heat exchanger design. Int. J. Heat Mass Transf. 15(9), 1647–1658 (1972)

    Article  Google Scholar 

  • Whitaker, S.: The equations of motion in porous media. Chem. Eng. Sci. 21(3), 291–300 (1966)

    Article  Google Scholar 

  • Xu, H., Qu, Z., Tao, W.: Numerical investigation on self-coupling heat transfer in a counter-flow double-pipe heat exchanger filled with metallic foams. Appl. Therm. Eng. 66(1), 43–54 (2014)

    Article  Google Scholar 

  • Yucel, N., Guven, R.T.: Forced-convection cooling enhancement of heated elements in a parallel-plate channels using porous inserts. Numer. Heat Transf. Part A Appl. 51(3), 293–312 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid E. Nimvari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamarani, A., Maerefat, M., Jouybari, N.F. et al. Thermal Performance Evaluation of a Double-Tube Heat Exchanger Partially Filled with Porous Media Under Turbulent Flow Regime. Transp Porous Med 120, 449–471 (2017). https://doi.org/10.1007/s11242-017-0933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0933-x

Keywords

Navigation