Skip to main content
Log in

Techniques for the regeneration and genetic transformation of Arabidopsis pumila: an ephemeral plant suitable for investigating the mechanisms for adaptation to desert environments

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Arabidopsis pumila is a type of cruciferous ephemeral plant, which in China mainly grows in the desert environments of northern Xinjiang. A. pumila not only has a short growth duration, but also has high photosynthetic efficiency, seed yield, salt tolerance, and drought resistance. It is an ideal species for the study of environmental adaptations in ephemeral plants. We induced callus tissue formation on the roots and hypocotyls of 8-day-old seedlings, and on the leaves and petioles of 4-week-old seedlings, and obtained multiple adventitious shoots on these tissues grown on Murashige and Skoog induction medium supplemented with 0.5 mg/L 6-Benzylaminopurine and 0.1 mg/L α-Naphthalene acetic acid. Young roots, hypocotyls, leaves, and petioles could all induce calluses, but the induction rate was highest on young roots. In addition, the leaves and petioles of 4-week-old seedlings were used as explants, the Δ1-pyrroline-5-carboxylic acid synthase gene 1 of A. pumila controlled by 35S promoter of cauliflower mosaic virus was used as target gene, and hygromycin B was used as screening antibiotic to explore Agrobacterium tumefaciens GV3101 mediated transformation. The results showed that the callus induction rate of petiole explants was the highest when they were treated with Agrobacterium suspension (OD600 = 0.6) for 10 min and thenco-cultured in dark for 2 days. The qRT-PCR results showed that the ApP5CS1.1 gene was overexpressed in the transgenic plants. These protocols provide working research methods for exploring the cellular level adaptative mechanisms of this species to desert environments.

Key message

Establishment of tissue culture in ephemeral plant Arabidopsis pumila and efficient Agrobacterium-mediated genetic transformation for investigating the mechanisms for adaptation to desert environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MS:

Murashige and Skoog

6-BA:

6-Benzylaminopurine

NAA:

α-Naphthalene acetic acid

Carb:

Carbenicillin

P5CS1 :

Delta-1-pyrroline-5-carboxylic acid synthase 1

qRT-PCR:

Quantitative real-time PCR

References

  • Agrawal DC, Banerjee AK, Kolala RR, Dhage AB, Kulkarni AV, Nalawade SM, Hazra S, Krishnamurthy KV (1997) In vitro induction of multiple shoots and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 16(9):647–652

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Mujib A, Tonk D, Zafar N (2017) Plant regeneration through somatic embryogenesis and genome size analysis of Coriandrum sativum L. Protoplasma 254(1):343–352

    Article  CAS  PubMed  Google Scholar 

  • Anton DB, Guzman FL, Vetö NM, Krause FA, Kulcheski FR, Coelho APD, Duarte GL, Margis R, Dillenburg LR, Turchetto-Zolet AC (2020) Characterization and expression analysis of P5CS (Δ1-pyrroline-5-carboxylate synthase) gene in two distinct populations of the Atlantic Forest native species Eugenia uniflora L. Mol Biol Rep 47(2):1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Bertier LD, Ron M, Huo H, Bradford KJ, Britt AB, Michelmore RW (2018) High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR/Cas9-induced modifications of NCED4 in Lettuce (Lactuca sativa). G3 (bethesda) 8(5):1513–1521

    Article  CAS  Google Scholar 

  • Bömer M, Rathnayake AI, Visendi P, Sewe SO, Sicat JPA, Silva G, Kumar PL, Seal SE (2019) Tissue culture and next-generation sequencing: a combined approach for detecting yam (Dioscorea spp.) viruses. Physiol Mol Plant Pathol 105:54–66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruce MA, Shoup Rupp JL (2019) Agrobacterium-mediated transformation of Solanum tuberosum L. Potato Methods Mol Biol 1864:203–223

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Yang M, Ma W, Sun Y, Chen G (2018) Overexpression of SSBXoc, a single-stranded DNA-binding protein from Xanthomonas oryzae pv. oryzicola, enhances plant growth and disease and salt stress tolerance in transgenic Nicotiana benthamiana. Front Plant Sci 9:953

    Article  PubMed  PubMed Central  Google Scholar 

  • Cha TS, Yee W, Aziz A (2012) Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga Chlorella vulgaris. World J Microbiol Biotechnol 28(4):1771–1779

    Article  CAS  PubMed  Google Scholar 

  • Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han F (2016) Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics 43(1):37–43

    Article  PubMed  Google Scholar 

  • Fossi M, Amundson K, Kuppu S, Britt A, Comai L (2019) Regeneration of Solanum tuberosum plants from protoplasts induces widespread genome instability. Plant Physiol 180(1):78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambhir G, Kumar P, Srivastava DK (2017) High frequency regeneration of plants from cotyledon and hypocotyl cultures in Brassica oleracea cv. Pride of India. Biotechnol Rep (amst) 15:107–113

    Article  Google Scholar 

  • Garrocho-Villegas V, de Jesús-Olivera MT, Quintanar ES (2012) Maize somatic embryogenesis: recent features to improve plant regeneration. Methods Mol Biol 877:173–182

    Article  CAS  PubMed  Google Scholar 

  • Gasparis S (2017) Agrobacterium-mediated transformation of leaf base segments. Methods Mol Biol 1536:95–111

    Article  CAS  PubMed  Google Scholar 

  • Gerszberg A, Hnatuszko-Konka K, Kowalczyk T (2015) In vitro regeneration of eight cultivars of Brassica oleracea var. capitata. In Vitro Cell Dev Biol Plant 51(1):80–87

    Article  PubMed  Google Scholar 

  • Han X, Ma S, Kong X, Takano T, Liu S (2013) Efficient Agrobacterium-mediated transformation of hybrid Poplar Populus davidiana Dode x Populus bollena Lauche. Int J Mol Sci 14(2):2515–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensel G, Marthe C, KumLehn J (2017) Agrobacterium-mediated transformation of wheat using immature embryos. Methods Mol Biol 1679:129–139

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3(5):824–834

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F, Fry J (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21(10):1010–1019

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Yang L, Jin Y, Lin J, Liu F (2017) Generation, annotation, and analysis of a large-scale expressed sequence tag library from Arabidopsis pumila to explore salt-responsive genes. Front Plant Sci 8:955

    Article  PubMed  PubMed Central  Google Scholar 

  • Imin N, Nizamidin M, Daniher D, Nolan KE, Rose RJ, Rolfe BG (2005) Proteomic analysis of somatic embryogenesis in Medicago truncatula. Explant cultures grown under 6-benzylaminopurine and 1-naphthaleneacetic acid treatments. Plant Physiol 137(4):1250–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Liu F, Huang W, Sun Q, Huang X (2019) Identification of reliable reference genes for qRT-PCR in the ephemeral plant Arabidopsis pumila based on full-length transcriptome data. Sci Rep 9(1):8408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kagami H, Taguchi K, Arakawa T, Kuroda Y, Tamagake H, Kubo T (2016) Efficient callus formation and plant regeneration are heritable characters in sugar beet (Beta vulgaris L.). Hereditas 153:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Srivastava DK (2015) High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var italica), an important vegetable crop. Physiol Mol Biol Plants 21(2):279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuriyama T, Shimada S, Matsui M (2019) Improvement of Agrobacterium-mediated transformation for tannin-producing Sorghum. Plant Biotechnol (tokyo) 36(1):43–48

    Article  CAS  Google Scholar 

  • Lee K, Eggenberger AL, Banakar R, McCaw ME, Zhu H, Main M, Kang M, Gelvin SB, Wang K (2019) CRISPR/Cas9-mediated targeted T-DNA integration in rice. Plant Mol Biol 99(4–5):317–328

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li X, Zhou Z, Wu P, Fang M, Pan X, Lin Q, Luo W, Wu G, Li H (2016) Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front Plant Sci 7:377

    PubMed  PubMed Central  Google Scholar 

  • Li M, Cheng C, Zhang X, Zhou S, Li L, Yang S (2019) Overexpression of pear (Pyrus pyrifolia) CAD2 in tomato affects lignin content. Molecules 24(14):2595

    Article  CAS  PubMed Central  Google Scholar 

  • Liu X, Feng CM, Franks R, Qu R, Xie DY, Xiang QY (2013) Plant regeneration and genetic transformation of C. canadensis: a non-model plant appropriate for investigation of flower development in Cornus (Cornaceae). Plant Cell Rep 32(1):77–87

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Loyola-Vargas VM, Ochoa-Alejo N (2018) An introduction to plant tissue culture: advances and perspectives. Methods Mol Biol 1815:3–13

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Tang K, Li P (2016) Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front Plant Sci 7:1647

    PubMed  PubMed Central  Google Scholar 

  • Meijer EG, Brown DC (1985) Screening of diploid Medicago sativa germplasm for somatic embryogenesis. Plant Cell Rep 4(5):285–288

    Article  CAS  PubMed  Google Scholar 

  • Movahedi A, Zhang J, Amirian R, Zhuge Q (2014) An efficient Agrobacterium-mediated transformation system for poplar. Int J Mol Sci 15(6):10780–10793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oosumi T, Gruszewski HA, Blischak LA, Baxter AJ, Wadl PA, Shuman JL, Veilleux RE, Shulaev V (2006) High-efficiency transformation of the diploid Strawberry (Fragaria vesca) for functional genomics. Planta 223(6):1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Prasad B, Vadakedath N, Jeong HJ, General T, Cho MG, Lein W (2014) Agrobacterium tumefaciens-mediated genetic transformation of haptophytes (Isochrysis species). Appl Microbiol Biotechnol 98(20):8629–8639

    Article  CAS  PubMed  Google Scholar 

  • Raza G, Singh MB, Bhalla PL (2017) In Vitro plant regeneration from commercial cultivars of soybean. Biomed Res Int 2017:7379693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raza G, Singh MB, Bhalla PL (2019) Somatic embryogenesis and plant regeneration from commercial soybean cultivars. Plants (basel) 9(1):38

    Article  CAS  Google Scholar 

  • Roussy I, Dubois F, Sangwan RS, Sangwan-Norreel BS (1996) In planta 2,3,5 truodobenzoic acid treatment promotes high frequency and routine in vitro regeneration of sugarbeet (Beta vulgaris L.) plants. Plant Cell Rep 16(3–4):142–146

    Article  CAS  PubMed  Google Scholar 

  • Sadeq MA, Pathak MR, Salih AA, Abido M, Abahussain A (2016) In vitro regeneration of endangered medicinal plant Heliotropium kotschyi (Ramram). Methods Mol Biol 1391:103–112

    Article  CAS  PubMed  Google Scholar 

  • Saika H, Toki S (2010) Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep 29(12):1351–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi ZY, Feng G, Christie P, Li XL (2006) Arbuscular mycorrhizal status of spring ephemerals in the desert ecosystem of Junggar Basin, China. Mycorrhiza 16(4):269–275

    Article  CAS  PubMed  Google Scholar 

  • Sidky R (2017) Optimized direct organogenesis from shoot tip explants of date palm. Methods Mol Biol 1637:37–45

    Article  CAS  PubMed  Google Scholar 

  • Sogutmaz Ozdemir B, Budak H (2018) Application of tissue culture and transformation techniques in model species Brachypodium distachyon. Methods Mol Biol 1667:289–310

    Article  PubMed  CAS  Google Scholar 

  • Song C, Lu L, Guo Y, Xu H, Li R (2019) Efficient Agrobacterium-mediated transformation of the commercial hybrid poplar Populus Alba × Populus glandulosa Uyeki. Int J Mol Sci 20(10):2594

    Article  CAS  PubMed Central  Google Scholar 

  • Sood P, Singh RK, Prasad M (2020) An efficient Agrobacterium-mediated genetic transformation method for foxtail millet (Setaria italica L.). Plant Cell Rep 39(4):511–525

    Article  CAS  PubMed  Google Scholar 

  • Soyk S, Müller NA, Park SJ, Schmalenbach I, Jiang K, Hayama R, Zhang L, Van Eck J, Jiménez-Gómez JM, Lippman ZB (2017) Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 49(1):162–168

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Underwood JL, Zhao S (2017) Dual-targeting by CRISPR/Cas9 for precise excision of transgenes from rice genome. Plant Cell Tissue Org 129:153–160

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Tatsis EC, O’Connor SE (2016) New developments in engineering plant metabolic pathways. Curr Opin Biotechnol 42:126–132

    Article  CAS  PubMed  Google Scholar 

  • Tu W, Li Y, Liu W, Wu L, Xie X, Zhang Y, Wilhelm C, Yang C (2016) Spring ephemerals adapt to extremely high light conditions via an unusual stabilization of photosystem II. Front Plant Sci 6:1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85(15):5536–5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Sun R, Wang Q, Zhang B (2019) Overexpression of miRNA in cotton via Agrobacterium-Mediated transformation. Methods Mol Biol 1902:223–231

    Article  CAS  PubMed  Google Scholar 

  • Weckx S, Inzé D, Maene L (2019) Tissue culture of oil palm: finding the balance between mass propagation and somaclonal variation. Front Plant Sci 10:722

    Article  PubMed  PubMed Central  Google Scholar 

  • Wickramasuriya AM, Dunwell JM (2015) Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. BMC Genomics 16(1):301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wright E, Dixon RA, Wang ZY (2006) Medicago truncatula transformation using cotyledon explants. Methods Mol Biol 343:129–135

    PubMed  Google Scholar 

  • Yang L, Jin Y, Huang W, Sun Q, Liu F, Huang X (2018) Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress. BMC Genomics 19(1):717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao YX, Wei YL, Zhao P, Xiang CB, Xu F, Li C, Huang XZ (2013) Construction of a cDNA library from the ephemeral plant Olimarabidopsis pumila and preliminary analysis of expressed sequence tags. Z Naturforsch C J Biosci 68(11–12):499–508

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Elumalai S, Nalapalli S, Richbourg L, Prairie A, Bradley D, Dong S, Su XJ, Gu W, Strebe T, Shi L, Que Q (2018) Advances in Agrobacterium-mediated maize transformation. Methods Mol Biol 1676:41–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the grants from the National Natural Science Foundation of China (Grant No. U1303302), the Shihezi University International Cooperation Program (Grant No. GJHZ201806), the Academic Leaders of Anhui University of Science and Technology Introduction Starting Fund (Grant No. NXYJ202001), and the Research and Innovation Project of Postgraduates in Xinjiang Uygur Autonomous Region (Grant No. XJ2019G083).

Author information

Authors and Affiliations

Authors

Contributions

XH and YJ conceived and designed research. YJ, LG, DL, and HA conducted the experiments. LZ and AC analyzed the data and revise the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Xianzhong Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Barbara Mary Doyle Prestwich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4030 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Guo, L., Liu, D. et al. Techniques for the regeneration and genetic transformation of Arabidopsis pumila: an ephemeral plant suitable for investigating the mechanisms for adaptation to desert environments. Plant Cell Tiss Organ Cult 150, 237–246 (2022). https://doi.org/10.1007/s11240-022-02264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02264-x

Keywords

Navigation