Skip to main content
Log in

The use of tissue culture and in-vitro approaches for the study of tree diseases

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

This article aims to review and discuss how to most effectively use tissue culture approaches as an aid to the study of tree diseases and pest syndromes. Firstly, the existing scientific literature is reviewed for how plant tissue culture techniques have been used to study various tree diseases in the past, with some reference to similar work that has been undertaken with other plants where relevant. In particular, the difficulties and limitations of trying to screen for resistant plants by exposing tree tissue cultures directly to disease causing organisms or extracts of them (mainly fungi, but also bacteria and even insects) is discussed at length. Examples are then provided for how even basic tissue culture procedures can greatly aid the study of tree disease processes, mainly by helping to organise and produce the plant material needed for such work according to need and at any time of year. This is especially important when working with trees, because they are much more difficult to study than short-lived crop plants, and the integration of tissue culture approaches into this work is an essential tool in this endeavour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

There are many ways in which ex-vitro plants can aid the study of the pests and diseases of trees, including a 3 month old ex-vitro elm plants generated for maintaining insect cultures all year round; b, c 2 month old ex-vitro elm plants generated for insect feeding and volatile collection experiments; d sample leaves from standardised ex-vitro elm plants being used for gene expression analysis after insect damage; while e shows larch trees (middle distance) in SW Scotland killed by Phytophthora ramorum, with surviving trees indicated by arrows; and f show an example of an ash tree that has survived an outbreak of ash die-back disease (centre), with many dead ash trees surrounding it

Similar content being viewed by others

Abbreviations

DED:

Dutch elm disease

EMS:

Ethyl methane sulphonate

PR:

Phytophthora ramorum

SE:

Somatic embryogenesis

References

  • Aoun M (2017) Host defense mechanisms during fungal pathogenesis and how these are overcome in susceptible plants: A Review. Int J Bot 13:82–102

    Article  CAS  Google Scholar 

  • Aoun M, Rioux D, Simard M, Bernier L (2009) Fungal colonization and host defense reactions in Ulmus americana callus cultures inoculated with Ophiostoma novo-ulmi. Phytopathology 99:642–650

    Article  PubMed  Google Scholar 

  • Aoun M, Jacobi V, Boyle B, Bernier L (2010) Identification and monitoring of Ulmus americana transcripts during in-vitro interactions with the Dutch elm disease pathogen Ophiostoma novo-ulmi. Physiol Mol Plant Pathol 74:254–266

    Article  CAS  Google Scholar 

  • Bajpai A, Chandra R, Misra M, Tiwari RK (2007) Regenerating Psidium spp. for screening wilt resistant rootstock under in-vitro conditions. Acta Hortic 735:145–153

    Article  Google Scholar 

  • Biondi S, Mirza J, Mittemperger L, Bagni N (1991) Selection of elm cell culture variants resistant to Ophiostoma ulmi culture filtrate. J Plant Physiol 137:631–634

    Article  Google Scholar 

  • Boyd LA, Ridout C, O’Sullivan DM, Leach JE, Leung H (2013) Plant–pathogen interactions: disease resistance in modern agriculture. Trends Genet 29:233–240

    Article  CAS  PubMed  Google Scholar 

  • Brasier CM (1991) Ophiostoma novo-ulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathologia 115:151–161

    Article  Google Scholar 

  • Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridization: hybridization is leading to rapid evolution of Dutch elm disease and other fungal plant pathogens. Bioscience 51:123–133

    Article  Google Scholar 

  • Brasier CM (2008) The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol 57:792–808

    Article  Google Scholar 

  • Brasier CM Personal Communication. Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK

  • Brasier C, Webber J (2010) Sudden larch death. Nature 466:824–825

    Article  CAS  PubMed  Google Scholar 

  • Brasier C, Webber J (2013) Vegetative incompatibility in the ash dieback pathogen Hymenoscyphus pseudoalbidus and its ecological implications. Fungal Ecol 6:501–512

    Article  Google Scholar 

  • Brasier CM, Kirk SA, Tegli S (1995) Naturally occurring non cerato-ulmin producing mutants of Ophiostoma novo-ulmi are pathogenic but lack aerial mycelium. Mycol Res 99:436–440

    Article  Google Scholar 

  • Bräutigam K, Vining KJ, Lafon-Placette C, Fossdal CG, Mirouze M, Marcos JG, Fluch S, Fraga MF, Guevara MA, Abarca D, Johnsen Ø, Maury S, Strauss SH, Campbell MM, Rohde A, Díaz-Sala C, Cervera MT (2013) Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol Evol 3:399–415

    Article  PubMed  PubMed Central  Google Scholar 

  • Brazolot J, Pauls KP (2003) Toxin resistant plants from plant cell culture and transformation. In: Spier RE (ed) Encyclopedia of cell technology 1. Wiley, Hoboken, pp 4689–4695

    Google Scholar 

  • Brisset MN, Paulin JP, Duron M (1988) Feasibility of rating fire blight susceptibility of pear cultivars (Pyrus communis) on in-vitro microcuttings. Agronomie 8:707–710

    Article  Google Scholar 

  • Büchel K, Malskies S, Mayer M, Fenning TM, Gershenzon J, Hilker M, Meiners T (2011) How plants give early herbivore alert: volatile terpenoids attract parasitoids to egg-infested elms. Basic Appl Ecol 12:403–412

    Article  CAS  Google Scholar 

  • Büchel K, McDowell E, Nelson W, Descour A, Soderlund C, Hilker M, Gershenzon J, Fenning T, Gang D, Meiners T (2012) An elm EST database for detection of leaf beetle oviposition-induced defense genes. BMC Genom 13:(242)

    Article  CAS  Google Scholar 

  • Büchel K, Austel N, Mayer M, Gershenzon J, Fenning, T, Meiners T (2014) Smelling the tree and the forest - elm background odours affect egg parasitoid orientation to herbivore induced terpenoids. BioControl 59:29–43

    Article  CAS  Google Scholar 

  • Büchel K, Fenning T, Gershenzon J, Hilker M, Meiners T (2016) Elm defence against herbivores and pathogens: morphological, chemical and molecular regulation aspects. Phytochem Rev 15:961–983

    Article  CAS  Google Scholar 

  • Buitatti M, Ingram D (1991) Phytotoxins as tools in breeding and selection of disease-resistant plants. Experientia 47:811–819

    Article  Google Scholar 

  • Busov VB, Brunner AM, Meilan R, Filichkin S, Ganio L, Gandhi S, Strauss SH (2005) Genetic transformation: a powerful tool for dissection of adaptive traits in trees. New Phytol 167:9–18

    Article  CAS  PubMed  Google Scholar 

  • Carlson PS (1973) Methionine sulfoximine-resistant mutants of tobacco. Science 180:1366–1368

    Article  CAS  PubMed  Google Scholar 

  • Chevreau E, Brisset MN, Paulin JP, James DJ (1998) Fire blight resistance and genetic trueness-to-type of four somaclonal variants from the apple cultivar Greensleeves. Euphytica 104:199–205

    Article  Google Scholar 

  • Deng Z, Gentile A, Domina F, Nicolosi E, Tribulato E, Vardi A (1995) Recovery of citrus somatic hybrids tolerant to Phoma Tracheiphila toxin, combining selection and identification by RAPD markers. In: Terzi M, Cella R, Falavigna A (eds) Current issues in plant molecular and cellular biology. Current plant science and biotechnology in agriculture, vol 22. Springer, Dordrecht

    Google Scholar 

  • Diamandis S (2014) Forests have survived climate changes and epidemics in the past. Will they continue to adapt and survive? At what cost? In: Fenning TM (ed) Challenges and opportunities for the World’s forests in the 21st century, chap 34. Springer, Dordrecht, pp p767–781

    Chapter  Google Scholar 

  • Diez J, Gil L (1998) Effects of Ophiostoma ulmi and Ophiostoma novo-ulmi culture filtrates on elm cultures from genotypes with different susceptibility to Dutch elm disease. Forest Pathol 28:399–407

    Article  Google Scholar 

  • Diez J, Gil L (2002) Influence of Ophiostoma novo-ulmi culture filtrates on callus of elms with different susceptibility to Dutch Elm disease. Forest Syst 11:67–76

    Google Scholar 

  • Dodds JH, Roberts LW (1982) Experiments in plant tissue culture, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Donovan A (1991) Screening for fire blight resistance in apple (Malus pumila) using excised leaf assays from in-vitro and in vivo grown material. Ann Appl Biol 119:59–68

    Article  Google Scholar 

  • Donovan A, Morgan R, Valobra-Piagnani C, Ridout M, James D, Garrett C (1994) Assessment of soma-clonal variation in apple. I. Resistance to the fire blight pathogen, Erwinia amylovora. J Hortic Sci 69:105–113

    Article  Google Scholar 

  • Drenkhan R, Solheim H, Bogacheva A, Riit T, Adamson K, Drenkhan T, Maaten T, Hietala AM (2017) Hymenoscyphus fraxineus is a leaf pathogen of local Fraxinus species in the Russian Far East. Plant Pathol 66:490–500

    Article  CAS  Google Scholar 

  • Eveillard S, Jollard C, Labroussaa F, Khalil D, Perrin M, Desqué D, Salar P, Razan F, Hévin C, Bordenave L, Foissac X, Masson JE, Malembic-Maher S (2016) Contrasting susceptibilities to Flavescence Dorée in Vitis vinifera, rootstocks and wild Vitis species. Front Plant Sci 29:1762

    Google Scholar 

  • Fenning TM (2006) The use of genetic transformation procedures to study the defence and disease resistance traits of trees. In: Fladung M, Ewald D (eds) Tree transgenesis: recent developments, chap 10. Springer, Heidelberg, pp 201–234

    Chapter  Google Scholar 

  • Fenning TM (2014) Introduction. In: Fenning TM (ed) Challenges and opportunities for the World’s forests in the 21st century, chap 1. Springer, Dordrecht, pp 1–19

    Chapter  Google Scholar 

  • Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forestry and a role for biotechnology. Trends Biotechnol 20:291–296

    Article  CAS  PubMed  Google Scholar 

  • Fenning TM, Gartland KMA, Brasier CM (1993) Micropropagation and regeneration of English elm, Ulmus procera Salisbury. J Exp Bot 44:1211–1217

    Article  Google Scholar 

  • Fenning TM, Walter C, Gartland K (2008) Forest biotech and climate change. Nat Biotechnol 26:615–617

    Article  CAS  PubMed  Google Scholar 

  • Fonseca S, Wheeler B (1990) Assessing resistance to Crinipellis perniciosa using cocoa callus. Plant Pathol 39:463–471

    Article  Google Scholar 

  • Forestry Commission (2018) Tree diseases pages: https://www.gov.uk/guidance/find-a-specific-tree-pest-or-disease

  • Fossdal CG, Yaqoob N, Krokene P, Kvaalen H, Solheim H, Yakovlev IA (2012) Local and systemic changes in expression of resistance genes, nb-lrr genes and their putative microRNAs in Norway spruce after wounding and inoculation with the pathogen Ceratocystis polonica. BMC Plant Biol 12:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge H, Li Y, Fu H, Long G, Luo L, Li R, Deng Z (2015) Production of sweet orange somaclones tolerant to citrus canker disease by in-vitro mutagenesis with EMS. Plant Cell, Tissue Organ Cult 123:29–38

    Article  CAS  Google Scholar 

  • Gentile A, Tribulato E, Continella G, Vardi A (1992a) Differential responses of citrus calli and protoplasts to culture filtrate and toxin of Phoma tracheiphila. Theor Appl Genet 83:759–764

    Article  CAS  PubMed  Google Scholar 

  • Gentile A, Tribulato E, Deng ZN, Vardi A (1992b) In-vitro selection of nucellar lemon callus and regeneration of plants tolerant to Phoma tracheiphila toxin. Adv Hortic Sci 6:151–154

    Google Scholar 

  • Gentile A, Tribulato E, Deng ZN, Galun E, Fluhr R, Vardi A (1993) Nucellar callus of ‘Femminello’ lemon, selected for tolerance to Phoma tracheiphila toxin, shows enhanced release of chitinase and glucanase into the culture medium. Theor Appl Genet 86:527–532

    Article  CAS  PubMed  Google Scholar 

  • Gentile A, Deng ZN, Tribulato E, Vardi A, Albanese G, Grimaldi V, Catara A (2000) Evaluation of lemon somaclones for tolerance to mal-secco disease by artificial inoculation. Acta Hortic 535:259–263

    Article  Google Scholar 

  • Goel S, Modgil M, Sharma R (2007) In-vitro evaluation of Phytophthora cactorum (Lebert and Cohn) culture filtrate influence on apple rootstock. Indian J Hortic 64:17–21

    Google Scholar 

  • Green S Personal Communication. Forest Research, Northern Research Station, Roslin, Midlothian, EH25 9SY, UK

  • Groover AT (2005) What genes make a tree a tree? Trends Plant Sci 10:210–214

    Article  CAS  PubMed  Google Scholar 

  • Groover A, Jansson S (2014) Comparative and evolutionary genomics of forest trees. In: Fenning TM (ed) Challenges and opportunities for the World’s forests in the 21st century, chap 26. Springer, Dordrecht, pp 597–614

    Chapter  Google Scholar 

  • Häggman H, Raybould A, Borem A, Fox T, Handley L, Hertzberg M, Lu MZ, Macdonald P, Oguchi T, Pasquali G, Pearson L, Peter G, Quemada H, Séguin A, Tattersall K, Ulian E, Walter C, McLean M (2013) Genetically engineered trees for plantation forests: key considerations for environmental risk assessment. Plant Biotechnol J 11:785–798

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall CM, James M, Baird T (2011) Forests and trees as charismatic mega-flora: implications for heritage tourism and conservation. J Herit Tour 6:309–323

    Article  Google Scholar 

  • Hammatt N, Ridout MS (1992) Micropropagation of common ash (Fraxinus excelsior). Plant Cell Tissue Organ Cult 31:67–74

    Article  CAS  Google Scholar 

  • Hammerbacher A, Ralph SG, Bohlmann J, Fenning TM, Gershenzon J, Schmidt A (2011) Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. Plant Physiol 157:876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammerschlag FA (1984) Optical evidence for an effect of culture filtrates of Xanthomonas campestris pv. pruni on peach mesophyll cell membranes. Plant Sci Lett 34:294–304

    Article  Google Scholar 

  • Hammerschlag FA (1988) Selection of peach cells for insensitivity to culture filtrate of Xanthomonas campestris pv. pruni and regeneration of resistant plants. Theor Appl Genet 76:865–869

    Article  CAS  PubMed  Google Scholar 

  • Hammerschlag FA (1990) Resistance responses of plants regenerated from peach callus to Xanthomonas campestris pv. pruni. J Am Soc Hortic Sci 115:1034–1037

    Article  Google Scholar 

  • Hammerschlag FA, Ognjanov V (1990) Somaclonal variation in peach: screening for resistance to Xanthomonas campestris pv. pruni and Pseudomonas syringae pv. syringae. Acta Hortic 280:403–408

    Article  Google Scholar 

  • Hammerschlag FA, Werner DJ, Ritchie DF (1994) Stability of bacterial leaf spot resistance in peach resistance under in-vitro, greenhouse and field conditions. Euphytica 76:101–106

    Article  Google Scholar 

  • Hammerschlag F, Ritchie D, Werner D, Hashmil G, Krusberg L, Meyer R, Huettel R (1995) In-vitro selection of disease resistance in fruit trees. Acta Hortic 392:19–26

    Article  Google Scholar 

  • Harper AL, McKinney LV, Nielsen LR, Havlickova L, Li Y, Trick M, Fraser F, Wang L, Fellgett A, Sollars ESA, Janacek SH, Downie A, Buggs R, Kjær ED, Bancroft I (2016) Molecular markers for tolerance of European ash (Fraxinus excelsior) to dieback disease identified using associative transcriptomics. Sci Rep 6:19335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey J, Witjes L, Benkirane M, Duyts H, Wagenaar R (2007) Nutritional suitability and ecological relevance of Arabidopsis thaliana and Brassica oleracea as foodplants for the cabbage butterfly, Pieris rapae. Plant Ecol 189:117–126

    Article  Google Scholar 

  • Hashmi G, Krusberg LR, Meyer R, Huettel EL, Hammerschlag FA (1993) In-vitro selection and molecular characterisation of Meloidogyne incognita-tolerant peach somaclones. HortScience 28:582

    Google Scholar 

  • Hashmi G, Huettel EL, Hammerschlag FA, Krusberg LR (1994) Optimum levels of meloidogyne incognita inoculum for infection of tomato and peach under in-vitro conditions. J Nematol 26:531–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Högberg K-A, Ekberg I, Norell L, von Arnold S (1998) Integration of somatic embryogenesis in a tree breeding programme: a case study with Picea abies. Can J For Res 28:1536–1545

    Article  Google Scholar 

  • Holeski LM, Jander G, Agrawal AA (2012) Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol Evol 27:618–626

    Article  PubMed  Google Scholar 

  • Huettel EL, Hammerschlag FA (1993) Response of peach scion cultivars and rootstocks to meloidogyne incognita in-vitro and in microplots. J Nematol 25:472–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasankar S, Litz RE (1998) Characterization of embryogenic mango cultures selected for resistance to Colletotrichum gloeosporioides culture filtrate and phytotoxin. Theor Appl Genet 96:823–831

    Article  CAS  Google Scholar 

  • Jayasankar S, Litz RE, Gray DJ, Moon PA (1999) Responses of embryogenic mango cultures and seedling bioassays to a partially purified phytotoxin produced by a mango leaf isolate of Colletotrichum gloeosporioides penz. In Vitro Cell Dev Biol Plant 35:475–479

    Article  CAS  Google Scholar 

  • Karp A (1995) Somaclonal variation as a tool for crop improvement. Euphytica 85:295–302

    Article  Google Scholar 

  • Khangjarakpam G, Bhattarai B, Maitra S (2014) Conventional and non-conventional breeding methods for Fusarium wilt resistance in commercial flowers. J Agric Technol 1:94–99

    Google Scholar 

  • Kim YW, Moon HK (2007) Enhancement of somatic embryogenesis and plant regeneration in Japanese larch (Larix leptolepis). Plant Cell Tissue Organ Cult 88:241–245

    Article  CAS  Google Scholar 

  • Kirst M, Johnson AF, Baucom C, Ulrich E, Hubbard K, Staggs R, Paule C, Retzel E, Whetten R, Sederoff R (2003) Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proc Natl Acad Sci USA 100:7383–7388

    Article  PubMed  PubMed Central  Google Scholar 

  • Kjær ED (2017) Introduction part 2. Consequences of ash dieback: damage level, resistance and resilience of European ash forests. Baltic For 23:141–143

    Google Scholar 

  • Kjær ED, Mckinney LV, Hansen LN, Olrik DC, Lobo A, Thomsen IM, Hansen JK, Nielsen LR (2017) Genetics of ash dieback resistance in a restoration context—experiences from Denmark. In: Vasaitis R, Enderle R (eds) Dieback of European Ash (Fraxinus spp.)—consequences and guidelines for sustainable management. SLU Service/Repro, Uppsala, pp 106–114

    Google Scholar 

  • Klimaszewska K, Park YS, Bonga JM (2011) Tissue culture research at the CFS: its history, current status and potential benefits. Canadian Forest Service Publications, Catalog ID: 32295

  • Klimaszewska K, Hargreaves C, Lelu-Walter M-A, Trontin J-F (2016) Advances in conifer somatic embryogenesis since year 2000. In: Germanà MA, Lambardi M (eds.), In vitro embryogenesis in higher plants, methods in molecular biology, chap 7, vol 1359. Springer, New York, pp 131–166

    Chapter  Google Scholar 

  • Krishna V, Kumar K, Pradeepa K, Kumar S, Kumar R (2013) Biochemical markers assisted screening of Fusarium wilt resistant Musa paradisiaca (L.) cv. Puttabale micropropagated clones. Indian J Exp Biol 51:531–542

    PubMed  Google Scholar 

  • Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari G, Kanwar K, Soni M, Sharma D (2017) In-vitro selection of cell lines in Punica granatum L. (Daru) against bacterial blight. Proc Natl Acad Sci USA 87:591–597

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Lelu M-A, Bastien C, Klimaszewska K, Ward C, Charest PJ (1994) An improved method for somatic plantlet production in hybrid larch (Larix × leptoeuropaea): part 1. somatic embryo maturation. Plant Cell Tissue Organ Cult 36:107–115

    Article  CAS  Google Scholar 

  • Lelu-Walter M-A, Pȃques LE (2009) Simplified and improved somatic embryogenesis of hybrid larches (Larix x eurolepis and Larix × marschlinsii). Perspectives for breeding. Ann For Sci 66:104

    Article  Google Scholar 

  • Maynard CA, McGuigan LD, Oakes AD, Zhang B, Newhouse AE, Northern LC, Chartrand AM, Will LR, Baier KM, Powell WA (2015) Chestnut, American (Castanea dentata (Marsh.) Borkh.). In: Wang K (ed) Agrobacterium protocols. Methods in molecular biology, vol 1224. Springer, New York, pp 143–161

    Chapter  Google Scholar 

  • McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol 21:178–183

    Article  CAS  PubMed  Google Scholar 

  • Meiners T, Hilker M (2000) Induction of plant synomones by oviposition of a phytophagous insect. J Chem Ecol 26:221–232

    Article  CAS  Google Scholar 

  • Mezzetti B, Rosati P, Zimmerman RH, Hammerschlag FA (1993) Determination of resistance to Phytophthora Cactorum culture filtrate in apple clonal rootstocks, cultivars and leaf regenerants, using the in-vitro proliferation and the optical probe methods. Acta Hortic 336:93–100

    Article  Google Scholar 

  • Mitras D, Kitin P, Iliev I, Dancheva D, Scaltsoyiannes A, Tsaktsira M, Nellas C, Rohr R (2009) In-vitro propagation of Fraxinus excelsior L. by epicotyls. J Biol Res (Thessaloniki) 11:37–48

    Google Scholar 

  • Modgil M, Guleria N, Ghani M, Sharma JN (2012) Identifying somaclonal variants of the apple rootstock Malling 7 resistant to white root rot. Sci Hortic 137:148–155

    Article  CAS  Google Scholar 

  • Muchero W, Labbé J, Ranjan P, DiFazio S, Tuskan GA (2014) Genome resequencing in Populus : revealing large-scale genome variation and implications on specialized-trait genomics. In: Fenning TM (ed) Challenges and opportunities for the World’s forests in the 21st century, chap 25. Springer, Dordrecht, pp 587–595

    Chapter  Google Scholar 

  • Muse RB, Collin HA, Isaac S, Hardwick K (1996) Effects of the fungus Crinipellis perniciosa, causal agent of witches’ broom disease, on cell and tissue cultures of cocoa (Theobroma cacao L.). Plant Pathol 45:145–154

    Article  Google Scholar 

  • Nagy NE, Franceschi VR, Kvaalen H, Solheim H (2005) Callus cultures and bark from Norway spruce clones show similar cellular features and relative resistance to fungal pathogens. Trees 19:695–703

    Article  Google Scholar 

  • Narayanasamy P (2008) Genetic resistance of crops to diseases. In: Molecular biology in plant pathogenesis and disease management, chap 3, vol 3. Springer, Dordrecht, pp 23–170

    Book  Google Scholar 

  • Neale DB et al (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nejat N, Rookes J, Mantri NL, Cahill DM (2017) Plant–pathogen interactions: toward development of next-generation disease-resistant plants. Crit Rev Biotechnol 37, 229–237

    Article  CAS  PubMed  Google Scholar 

  • Nelson C, Powell W, Merkle S, Carlson J, Hebard F, Islam-Faridi N, Staton M, Georgi L (2014) Biotechnology of trees: chestnut. In: Ramawat K, Mérillion J, Ahuja M (eds) Tree biotechnology, chap 1. CRC Press, Boca Raton, pp 3–35

    Google Scholar 

  • Nicole M-C, Zeneli G, Lavallée R, Rioux D, Bauce É, Morency M-J, Fenning TM, Séguin A (2006) White pine weevil (Pissodes strobi) biological performance is unaffected by the jasmonic acid or wound-induced defense response in Norway spruce (Picea abies). Tree Physiol 26:1377–1389

    Article  CAS  PubMed  Google Scholar 

  • Nyange N, Williamson B, Lyon G, McNicol R, Connolly T (1997) Responses of cells and protoplasts of Coffea arabica genotypes to partially purified culture filtrates produced by Colletotrichum kahawae. Plant Cell Rep 16:763–769

    Article  CAS  PubMed  Google Scholar 

  • Oliveira H, Sousa A, Alves A, Nogueira AJA, Santos C (2012) Inoculation with Ophiostoma novo-ulmi subsp. americana affects photosynthesis, nutrition and oxidative stress in in-vitro Ulmus minor plants. Environ Exp Bot 77:146–155

    Article  CAS  Google Scholar 

  • Ostry ME, Ward KT (2003) Field performance of Populus expressing somaclonal variation in resistance to Septoria musiva. Plant Sci 164:1–8

    Article  CAS  Google Scholar 

  • Ostry M, Hackett W, Michler C, Serres R, McCown B (1994) Influence of regeneration method and tissue source on the frequency of somatic variation in Populus to infection by Septoria musiva. Plant Sci 97:209–215

    Article  CAS  Google Scholar 

  • Penna S, Vitthal SB, Yadav PV (2012) In-vitro mutagenesis and selection in plant tissue cultures and their prospects for crop improvement. Bioremediat Biodivers Bioavailab 6:6–14

    Google Scholar 

  • Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA 91:5222–5226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips MA, Walter MH, Ralph SG, Dabrowska P, Luck K, Urós EM, Boland W, Strack D, Rodríguez-Concepción M, Bohlmann J, Gershenzon J (2007) Functional identification and differential expression of 1-deoxy-D-xylulose 5-phosphate synthase in induced terpenoid resin formation of Norway spruce (Picea abies). Plant Mol Biol 65:243–257

    Article  CAS  PubMed  Google Scholar 

  • Piagnani C, Faoro F, Sant S, Vercesi A (1997) Growth and ultrastructural modifications to chestnut calli induced by culture filtrates of virulent and hypovirulent Cryphonectria parasitica strains. For Pathol 27:23–32

    Article  Google Scholar 

  • Piagnani C, Assante G, Scalisi P, Zocchi G, Vercesi A (2002) Growth and physiological responses of chestnut calli to crude extracts of virulent and hypovirulent strains of Cryphonectria parasitica. For Pathol 32:43–53

    Article  Google Scholar 

  • Plourde KV, Bernier L (2014) A rapid virulence assay for the Dutch elm disease fungus Ophiostoma novo-ulmi by inoculation of apple (Malus x domestica ‘Golden Delicious’) fruits. Plant Pathol 63:1078–1085

    Article  CAS  Google Scholar 

  • Ponte Newsletter (2017) Discovery of Phytophthora ramorum on Japanese larch in Brittany (France). https://www.ponteproject.eu/news/discovery-phytophthora-ramorum-japanese-larch-brittany-france/

  • Pratt J (2013) Preservation of genetic diversity of ash in Britain: some thoughts. Scott For 67:12–16

    Google Scholar 

  • Purwati RD, Sudarsono (2007) Resistance of abaca somaclonal variant against Fusarium. HAYATI. J Biosci 14:133–139

    Google Scholar 

  • Putri AI, Na’iem M, Indrioko S, Rahayu S, Indrianto A (2014) In-vitro screening of Falcataria moluccana (Miq.) with gall rust (Uromycladium tepperianum (Sacc.) filtrate as media selection. Indones J Biotechnol 19:111–120

    Article  Google Scholar 

  • Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in-vitro selection - An overview of the recent progress. Environ Exp Bot 71:89–98

    Article  Google Scholar 

  • Raman H, Goodwin PB (2000) In-vitro screening of apple germplasm for resistance against black spot caused by Venturia inaequalis. J New Seeds 2:37–46

    Article  Google Scholar 

  • Rao S, Sandhya H (2016) In-vitro selection of disease-resistant plants. In: Anis M, Ahmad N (eds) Plant tissue culture: propagation, conservation and crop improvement, chap 17. Springer, Singapore, pp 395–417

    Chapter  Google Scholar 

  • Read DJ, Freer-Smith PH, Morison JIL, Hanley N, West CC, Snowdon P (eds) (2009) Combating climate change – a role for UK forests: an assessment of the potential of the UK’s trees and Woodlands to mitigate and adapt to climate change. The Stationery Office Limited, Edinburgh

    Google Scholar 

  • Ritchie DF, Hammerschlag FA, Werner DJ (1993) Field evaluation of tissue culture-derived peach trees for susceptibility to bacterial spot (Xanthomonas Campestris Pv. Pruni). Acta Hortic 336:155–164

    Article  Google Scholar 

  • Rosati P, Mezetti B, Ancherini M, Foscolo S, Predieri S, Fasolo F (1990) In-vitro selection of apple rootstock somaclones with Phytophthora cactorum culture filtrate. Acta Hortic 280:409–416

    Article  Google Scholar 

  • Santini A, Faccoli M (2014) Dutch elm disease and elm bark beetles: a century of association. iForest 8:126–134

    Article  Google Scholar 

  • Savita, Virk GS, Nagpal A (2011) In-vitro selection of calli of Citrus jambhiri Lush. for tolerance to culture filtrate of Phytophthora parasitica and their regeneration. Physiol Mol Biol Plants 17:41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheewe P, Ketzel A (1994) In-vitro screening for resistance against powdery mildew (Podosphaera leucotricha [Ell. et Ev.] Salm.) in apple. J Plant Dis Prot 101:368–377

    CAS  Google Scholar 

  • Šedivá J, Havrdová L, Maršík P (2017) Micropropagation of common ash clones resistant to fungus Hymenoscyphus fraxineus. Acta Hortic 1155:93–99

    Article  Google Scholar 

  • Sedra MH, Lazrek BH (2011) Fusarium oxysporum f. sp. Albedinis toxin characterization and use for selection of resistant date palm to Bayoud disease. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology, chap 13. Springer, Heidelberg, pp 253–270

    Chapter  Google Scholar 

  • Skrøppa T, Kohmann K, Johnsen Ø, Steffenrem A, Edvardsen ØM (2007) Field performance and early test results of offspring from two Norway spruce seed orchards containing clones transferred to warmer climates. Can J For Res 37:515–522

    Article  Google Scholar 

  • Slavov S (2014) Phytotoxins and in-vitro screening for improved disease resistant plants. Biotechnol Biotechnol Equip 19:48–55

    Article  Google Scholar 

  • Sollars ESA et al (2017) Genome sequence and genetic diversity of European ash trees. Nature 541:212–216

    Article  CAS  PubMed  Google Scholar 

  • Soni M, Kanwar K (2016) Phytotoxicity studies of Ceratocystis fimbriata causing pomegranate wilt in Punica granatum L. Cv. Kandhari Kabuli. J Plant Pathol Microbiol 7:2

    Article  CAS  Google Scholar 

  • Steinitz B, Navon A, Berlinger MJ, Klein M (1993) Expression of insect resistance in in-vitro-derived callus tissue infested with lepidopteran larvae. J Plant Physiol 142:480–484

    Article  CAS  Google Scholar 

  • Stringer M, Timberlake W (1993) Cerato-ulmin, a toxin involved in Dutch elm disease is a fungal hydrophobin. Plant Cell 5:145–146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Švábová L, Lebeda A (2005) In-vitro selection for improved plant resistance to toxin-producing pathogens. J Phytopathol 153:52–64

    Article  Google Scholar 

  • Terho M, Pappinen A, von Weissenberg K (2000) Growth reactions of a Gremmeniella abietina isolate and Scots pine embryogenic tissue cultures differ in a host–parasite in-vitro system. Forest Pathol 30:285–295

    Article  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Thorpe TA (2007) History of plant tissue culture. Mol Biotechnol 37:169–180

    Article  CAS  PubMed  Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Valle T, López J, Hernández J, Corchete P (1997) Antifungal activity of scopoletin and its differential accumulation in Ulmus pumila and Ulmus campestris cell suspension cultures infected with Ophiostoma ulmi spores. Plant Sci 125:97–101

    Article  CAS  Google Scholar 

  • van den Bulk RW (1991) Application of cell and tissue culture and in-vitro selection for disease resistance breeding - a review. Euphytica 56:269–285

    Article  Google Scholar 

  • Viseur J (1990) Evaluation of fire blight resistance of somaclonal variants obtained from the pear cultivar ‘Durondeau’. Acta Hortic 273:275–284

    Article  Google Scholar 

  • Vos JE, Schoeman MH, Berjak P, Watt MP, Toerien AJ (2000) In-vitro selection and commercial release of guava wilt resistant rootstocks. Acta Hortic 513:69–75

    Google Scholar 

  • Wedge DE, Tainter FH (1997) In-vitro detection of Cornus florida callus insensitive to toxic metabolites of Discula destructiva. In Vitro Cell Dev Biol Plant 33:142–146

    Article  CAS  Google Scholar 

  • Wilhelm E (2007) Application of plant tissue culture for studies of fruit tree defense mechanisms. In: Chincholkar SB, Mukerji KG (eds) Biological control of plant diseases, chap 13. The Haworth Press Inc., New York, pp. 355–377

    Google Scholar 

  • Yeole MP, Gholse YN, Gurunani SG, Dhole SM (2016) Plant tissue culture techniques: a review for future view. Crit Rev Pharm Sci 5:16–24

    CAS  Google Scholar 

  • Yepes LM, Aldwinckle HS (1993) Selection of resistance to Venturia inaequalis using detached leaves from in-vitro-grown apple shoots. Plant Sci 93:211–216

    Article  Google Scholar 

  • Zanzotto A, Gardiman M, Lovat L (2008) Effect of Phaeomoniella chlamydospora and Phaeoacremonium. sp. on in-vitro grapevine plants. Sci Hortic 116:404–408

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of Gustavo Lopez of FR and the Defra grant TH0133 for the Living Ash Project. We also thank Sarah Green of FR; Jo Clark of the Future Trees Trust; and the Max Planck Institute for Chemical Ecology, in Germany, for their comments about this manuscript and for the provision of photographs.

Author information

Authors and Affiliations

Authors

Contributions

TMF prepared all of the drafts for this manuscript.

Corresponding author

Correspondence to Trevor M. Fenning.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Ethical approval

The author declares that this work is fully compliant with ethical standards

Additional information

Communicated by Maurizio Lambardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenning, T.M. The use of tissue culture and in-vitro approaches for the study of tree diseases. Plant Cell Tiss Organ Cult 136, 415–430 (2019). https://doi.org/10.1007/s11240-018-01531-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-01531-0

Keywords

Navigation