Skip to main content

Advertisement

Log in

Overexpression and oral immunogenicity of a dengue antigen transiently expressed in Nicotiana benthamiana

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The feasibility of a safe and cost-effective oral dengue vaccine approach was investigated. Consensus domain III of the dengue virus (DENV) serotypes 1–4 envelope glycoprotein was fused with cholera toxin B subunit (CTB–cEDIII) and cloned into TMV-based 3′ pro-module for high level expression. The construct was co-infiltrated with TMV-based 5′ pro-module and Integrase module into Nicotiana benthamiana leaves using vacuum agroinfiltration. CTB–cEDIII fusion protein directed to endoplasmic reticulum by C-terminal SEKEDL sequence was expressed at up to 8.4% of total soluble protein at 5 days-post infiltration (dpi). After oral immunization of mice with the transiently expressed plant-derived CTB–cEDIII, high titers of serum IgG and sIgA against both cEDIII and CTB were observed, peaking at week four. Sera from immunized mice reacted with each of the four DENV serotype-specific envelope proteins domain III. These results show that (i) the TMV-based pro-vector system is suitable for high-level expression of antigen in plant cells and (ii) the CTB fusion with cEDIII could be exploited as an oral vaccine candidate for induction of both systemic and mucosal immune responses to DENV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arakawa T, Chong DK, Merritt JL, Langridge WH (1997) Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res 6(6):403–413

    Article  CAS  PubMed  Google Scholar 

  • Azegami T, Yuki Y, Kiyono H (2014) Challenges in mucosal vaccines for the control of infectious diseases. Int Immunol 26(9):517–528. doi:10.1093/intimm/dxu063

    Article  CAS  PubMed  Google Scholar 

  • Balsitis SJ, Williams KL, Lachica R, Flores D, Kyle JL, Mehlhop E, Johnson S, Diamond MS, Beatty PR, Harris E (2010) Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog 6(2):e1000790. doi:10.1371/journal.ppat.1000790

    Article  PubMed Central  PubMed  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–507. doi:10.1038/nature12060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blanchard TG, Lycke N, Czinn SJ, Nedrud JG (1998) Recombinant cholera toxin B subunit is not an effective mucosal adjuvant for oral immunization of mice against Helicobacter felis. Immunology 94(1):22–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan HT, Daniell H (2015) Plant-made oral vaccines against human infectious diseases-Are we there yet? Plant Biotechnol J 13(8):1056–1070. doi:10.1111/pbi.12471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chau TN, Quyen NT, Thuy TT, Tuan NM, Hoang DM, Dung NT, Lien le B, Quy NT, Hieu NT, Hieu LT, Hien TT, Hung NT, Farrar J, Simmons CP (2008) Dengue in Vietnamese infants–results of infection-enhancement assays correlate with age-related disease epidemiology, and cellular immune responses correlate with disease severity. J Infect Dis 198(4):516–524. doi:10.1086/590117

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen HW, Liu SJ, Li YS, Liu HH, Tsai JP, Chiang CY, Chen MY, Hwang CS, Huang CC, Hu HM, Chung HH, Wu SH, Chong P, Leng CH, Pan CH (2013) A consensus envelope protein domain III can induce neutralizing antibody responses against serotype 2 of dengue virus in non-human primates. Arch Virol 158(7):1523–1531. doi:10.1007/s00705-013-1639-1

    Article  CAS  PubMed  Google Scholar 

  • Chiang CY, Hsieh CH, Chen MY, Tsai JP, Liu HH, Liu SJ, Chong P, Leng CH, Chen HW (2014) Recombinant lipidated dengue-4 envelope protein domain III elicits protective immunity. Vaccine 32(12):1346–1353. doi:10.1016/j.vaccine.2014.01.041

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Ruiz G, Denes B, Sandberg L, Langridge W (2009) Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function. BMC Biotechnol 9:33. doi:10.1186/1472-6750-9-33

    Article  PubMed Central  PubMed  Google Scholar 

  • Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8(2):223–242. doi:10.1111/j.1467-7652.2009.00479.x

    Article  CAS  PubMed  Google Scholar 

  • Didierlaurent AM, Laupeze B, Di Pasquale A, Hergli N, Collignon C, Garcon N (2017) Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines 16(1):55–63. doi:10.1080/14760584.2016.1213632

    Article  CAS  PubMed  Google Scholar 

  • Fernandez S, Thomas SJ, De La Barrera R, Im-Erbsin R, Jarman RG, Baras B, Toussaint JF, Mossman S, Innis BL, Schmidt A, Malice MP, Festraets P, Warter L, Putnak JR, Eckels KH (2015) An adjuvanted, tetravalent dengue virus purified inactivated vaccine candidate induces long-lasting and protective antibody responses against dengue challenge in Rhesus macaques. Am J Trop Med Hyg 92(4):698–708. doi:10.4269/ajtmh.14-0268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forthal D, Landucci G, Steinkellner H (2010) Fc Glycosylation pattern influences Fc gamma R binding and anti-viral activity of mAb 2G12. Aids Res Hum Retrov 26(10):A61-A61

    Google Scholar 

  • Gerasimova SV, Smirnova OG, Kochetov AV, Shumnyi VK (2016) Production of recombinant proteins in plant cells. Russ J Plant Physiol 63(1):26–37 doi:10.1134/S1021443716010076

    Article  CAS  Google Scholar 

  • Gonzalez-Rabade N, McGowan EG, Zhou F, McCabe MS, Bock R, Dix PJ, Gray JC, Ma JK (2011) Immunogenicity of chloroplast-derived HIV-1 p24 and a p24-Nef fusion protein following subcutaneous and oral administration in mice. Plant Biotechnol J 9(6):629–638. doi:10.1111/j.1467-7652.2011.00609.x

    Article  CAS  PubMed  Google Scholar 

  • Hadinegoro SR, Arredondo-Garcia JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, Muhammad Ismail HI, Reynales H, Limkittikul K, Rivera-Medina DM, Tran HN, Bouckenooghe A, Chansinghakul D, Cortes M, Fanouillere K, Forrat R, Frago C, Gailhardou S, Jackson N, Noriega F, Plennevaux E, Wartel TA, Zambrano B, Saville M (2015) Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med 373(13):1195–1206. doi:10.1056/NEJMoa1506223

    Article  CAS  PubMed  Google Scholar 

  • Harahap-Carrillo IS, Ceballos-Olvera I, Valle JR (2015) Immunogenic subviral particles displaying domain III of dengue 2 envelope protein vectored by measles virus. Vaccines (Basel) 3(3):503–518. doi:10.3390/vaccines3030503

    Article  Google Scholar 

  • Hermida L, Bernardo L, Martin J, Alvarez M, Prado I, Lopez C, Sierra Bde L, Martinez R, Rodriguez R, Zulueta A, Perez AB, Lazo L, Rosario D, Guillen G, Guzman MG (2006) A recombinant fusion protein containing the domain III of the dengue-2 envelope protein is immunogenic and protective in nonhuman primates. Vaccine 24(16):3165–3171. doi:10.1016/j.vaccine.2006.01.036

    Article  CAS  PubMed  Google Scholar 

  • Holmgren J, Czerkinsky C, Lycke N, Svennerholm AM (1994) Strategies for the induction of immune-responses at mucosal surfaces making use of cholera-toxin-B subunit as immunogen, carrier, and adjuvant. Am J Trop Med Hyg 50(5):42–54

    CAS  PubMed  Google Scholar 

  • Horibe K, Nakamichi Y, Uehara S, Nakamura M, Koide M, Kobayashi Y, Takahashi N, Udagawa N (2013) Roles of cathelicidin-related antimicrobial peptide in murine osteoclastogenesis. Immunology 140(3):344–351. doi:10.1111/imm.12146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang KJ, Yang YC, Lin YS, Huang JH, Liu HS, Yeh TM, Chen SH, Liu CC, Lei HY (2006) The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. J Immunol 176(5):2825–2832

    Article  CAS  PubMed  Google Scholar 

  • Huy N-X, Tien N-Q-D, Kim M-Y, Kim T-G, Jang Y-S, Yang M-S (2016) Immunogenicity of an S1D epitope from porcine epidemic diarrhea virus and cholera toxin B subunit fusion protein transiently expressed in infiltrated Nicotiana benthamiana leaves. Plant Cell Tiss Organ Cult 127(2):369–380. doi:10.1007/s11240-016-1059-5

    Article  CAS  Google Scholar 

  • Jespersgaard C, Hajishengallis G, Greenway TE, Smith DJ, Russell MW, Michalek SM (1999) Functional and immunogenic characterization of two cloned regions of Streptococcus mutans glucosyltransferase I. Infect Immun 67(2):810–816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim TG, Kim BG, Kim MY, Choi JK, Jung ES, Yang MS (2010) Expression and immunogenicity of enterotoxigenic Escherichia coli heat-labile toxin B subunit in transgenic rice callus. Mol Biotechnol 44(1):14–21. doi:10.1007/s12033-009-9200-x

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Jung DI, Yang IY, Kim J, Lee KY, Nochi T, Kiyono H, Jang YS (2011) M cells expressing the complement C5a receptor are efficient targets for mucosal vaccine delivery. Eur J Immunol 41(11):3219–3229. doi:10.1002/eji.201141592

    Article  CAS  PubMed  Google Scholar 

  • Kim M-Y, Chung N-D, Yang M-S, Kim T-G (2013a) Expression of a cholera toxin B subunit and consensus dengue virus envelope protein domain III fusion gene in transgenic rice callus. Plant Cell Tiss Organ Cult 112(3):311–320. doi:10.1007/s11240-012-0238-2

    Article  CAS  Google Scholar 

  • Kim MY, Chung ND, Yang MS, Kim TG (2013b) Expression of a cholera toxin B subunit and consensus dengue virus envelope protein domain III fusion gene in transgenic rice callus. Plant Cell Tissue Organ Cult 112(3):311–320

    Article  CAS  Google Scholar 

  • Kim M-Y, Jang Y-S, Yang M-S, Kim T-G (2015) High expression of consensus dengue virus envelope glycoprotein domain III using a viral expression system in tobacco. Plant Cell Tiss Organ Cult 122(2):445–451. doi:10.1007/s11240-015-0781-8

    Article  CAS  Google Scholar 

  • Kirkpatrick BD, Whitehead SS, Pierce KK, Tibery CM, Grier PL, Hynes NA, Larsson CJ, Sabundayo BP, Talaat KR, Janiak A, Carmolli MP, Luke CJ, Diehl SA, Durbin AP (2016) The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Sci Transl Med 8(330):330ra36–330ra36. doi:10.1126/scitranslmed.aaf1517

    Article  PubMed  Google Scholar 

  • Kozireski-Chuback D, Wu G, Ledeen RW (1999) Developmental appearance of nuclear GM1 in neurons of the central and peripheral nervous systems. Brain Res Dev Brain Res 115(2):201–208

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Nguyen MT (2015) Recent advances of vaccine adjuvants for infectious diseases. Immune Netw 15(2):51–57. doi:10.4110/in.2015.15.2.51

    Article  PubMed Central  PubMed  Google Scholar 

  • Leng CH, Liu SJ, Tsai JP, Li YS, Chen MY, Liu HH, Lien SP, Yueh A, Hsiao KN, Lai LW, Liu FC, Chong P, Chen HW (2009) A novel dengue vaccine candidate that induces cross-neutralizing antibodies and memory immunity. Microbes Infect 11(2):288–295. doi:10.1016/j.micinf.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  • Lindbo JA (2007) High-efficiency protein expression in plants from agroinfection-compatible Tobacco mosaic virus expression vectors. BMC Biotechnol 7:52. doi:10.1186/1472-6750-7-52

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu W, Yuan JS, Stewart CN Jr (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet. doi:10.1038/nrg3626

    Google Scholar 

  • Mardanova ES, Kotlyarov RY, Kuprianov VV, Stepanova LA, Tsybalova LM, Lomonosoff GP, Ravin NV (2015) Rapid high-yield expression of a candidate influenza vaccine based on the ectodomain of M2 protein linked to flagellin in plants using viral vectors. BMC Biotechnol 15:42. doi:10.1186/s12896-015-0164-6

    Article  PubMed Central  PubMed  Google Scholar 

  • Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23(6):718–723. doi:10.1038/nbt1094

    Article  CAS  PubMed  Google Scholar 

  • Merlin M, Pezzotti M, Avesani L (2017) Edible plants for oral delivery of biopharmaceuticals. Br J Clin Pharmacol 83(1):71–81. doi:10.1111/bcp.12949

    Article  CAS  PubMed  Google Scholar 

  • Molina A, Veramendi J, Hervas-Stubbs S (2005) Induction of neutralizing antibodies by a tobacco chloroplast-derived vaccine based on a B cell epitope from canine parvovirus. Virology 342(2):266–275. doi:10.1016/j.virol.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  • Newsted D, Fallahi F, Golshani A, Azizi A (2015) Advances and challenges in mucosal adjuvant technology. Vaccine 33(21):2399–2405. doi:10.1016/j.vaccine.2015.03.096

    Article  CAS  PubMed  Google Scholar 

  • Oey M, Lohse M, Kreikemeyer B, Bock R (2009a) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57(3):436–445. doi:10.1111/j.1365-313X.2008.03702.x

    Article  CAS  PubMed  Google Scholar 

  • Oey M, Lohse M, Scharff LB, Kreikemeyer B, Bock R (2009b) Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins. Proc Natl Acad Sci USA 106(16):6579–6584. doi:10.1073/pnas.0813146106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osorio JE, Huang CY, Kinney RM, Stinchcomb DT (2011) Development of DENVax: a chimeric dengue-2 PDK-53-based tetravalent vaccine for protection against dengue fever. Vaccine 29(42):7251–7260. doi:10.1016/j.vaccine.2011.07.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osorio JE, Velez ID, Thomson C, Lopez L, Jimenez A, Haller AA, Silengo S, Scott J, Boroughs KL, Stovall JL, Luy BE, Arguello J, Beatty ME, Santangelo J, Gordon GS, Huang CY, Stinchcomb DT (2014) Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: a randomised, placebo-controlled, phase 1 study. Lancet Infect Dis 14(9):830–838. doi:10.1016/S1473-3099(14)70811-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prompetchara E, Ketloy C, Keelapang P, Sittisombut N, Ruxrungtham K (2015) The immunogenicity of tetravalent dengue DNA vaccine in mice pre-exposed to Japanese encephalitis or Dengue virus antigens. Asian Pac J Allergy Immunol 33(3):182–188. doi:10.12932/AP0508.33.3.2015

    PubMed  Google Scholar 

  • Rosales-Mendoza S, Salazar-Gonzalez JA (2014) Immunological aspects of using plant cells as delivery vehicles for oral vaccines. Expert Rev Vaccines 13(6):737–749. doi:10.1586/14760584.2014.913483

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Gonzalez JA, Banuelos-Hernandez B, Rosales-Mendoza S (2015) Current status of viral expression systems in plants and perspectives for oral vaccines development. Plant Mol Biol 87(3):203–217. doi:10.1007/s11103-014-0279-5

    Article  CAS  PubMed  Google Scholar 

  • Sanchez J, Holmgren J (2008) Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell Mol Life Sci 65(9):1347–1360. doi:10.1007/s00018-008-7496-5

    Article  CAS  PubMed  Google Scholar 

  • Scott LJ (2016) Tetravalent Dengue Vaccine: A Review in the Prevention of Dengue Disease. Drugs 76(13):1301–1312. doi:10.1007/s40265-016-0626-8

    Article  CAS  PubMed  Google Scholar 

  • Shepard DS, Undurraga EA, Halasa YA, Stanaway JD (2016) The global economic burden of dengue: a systematic analysis. Lancet Infect Dis 16(8):935–941. doi:10.1016/S1473-3099(16)00146-8

    Article  PubMed  Google Scholar 

  • Simmons CP, Farrar JJ, Nguyen v V, Wills B (2012) Dengue. N Engl J Med 366(15):1423–1432. doi:10.1056/NEJMra1110265

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Gowda DV, Madhunapantula SV, Shinde CG, Iyer M (2015) Mucosal vaccines: a paradigm shift in the development of mucosal adjuvants and delivery vehicles. APMIS 123(4):275–288. doi:10.1111/apm.12351

    Article  CAS  PubMed  Google Scholar 

  • Strasser R, Stadlmann J, Schahs M, Stiegler G, Quendler H, Mach L, Glossl J, Weterings K, Pabst M, Steinkellner H (2008) Generation of glyco-engineered Nicotiana benthamiana for the production of monoclonal antibodies with a homogeneous human-like N-glycan structure. Plant Biotechnol J 6(4):392–402. doi:10.1111/j.1467-7652.2008.00330.x

    Article  CAS  PubMed  Google Scholar 

  • Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P, Jez J, Rademacher T, Altmann F, Mach L, Steinkellner H (2009) Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous beta1,4-galactosylated N-glycan profile. J Biol Chem 284(31):20479–20485. doi:10.1074/jbc.M109.014126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun JB, Holmgren J, Czerkinsky C (1994) Cholera-toxin B-subunit—an efficient transmucosal carrier-delivery system for induction of peripheral immunological-tolerance. Proc Natl Acad Sci USA 91(23):10795–10799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeyama N, Yuki Y, Tokuhara D, Oroku K, Mejima M, Kurokawa S, Kuroda M, Kodama T, Nagai S, Ueda S, Kiyono H (2015) Oral rice-based vaccine induces passive and active immunity against enterotoxigenic E. coli-mediated diarrhea in pigs. Vaccine 33(39):5204–5211. doi:10.1016/j.vaccine.2015.07.074

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Coppel RL (2008) Oral vaccine delivery: can it protect against non-mucosal pathogens? Expert Rev Vaccines 7(6):729–738. doi:10.1586/14760584.7.6.729

    Article  PubMed  Google Scholar 

  • Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign dna into Agrobacterium. In: Wang K (ed) Agrobacterium protocols. Humana Press, Totowa, NJ, pp 43–54

    Chapter  Google Scholar 

  • Zhang P, Yang QB, Balkovetz DF, Lewis JP, Clements JD, Michalek SM, Katz J (2005) Effectiveness of the B subunit of cholera toxin in potentiating immune responses to the recombinant hemagglutinin/adhesin domain of the gingipain Kgp from Porphyromonas gingivalis. Vaccine 23(39):4734–4744. doi:10.1016/j.vaccine.2005.05.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by NRF-2014K1B1A1073861 through the National Research Foundation (NRF) funded by the Korean Ministry of Science, ICT & Future Planning and by the Advanced Production Technology Development Program (312037-05), Ministry of Agriculture, Food and Rural Affairs (714001-07), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

M-Y Kim and N-X Huy designed the overall study and wrote the manuscript. M-Y. Kim generated the constructs and N-X Huy performed expression, the animal experiments and analyzed the data.

Corresponding author

Correspondence to Mi-Young Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Ming-Tsair Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huy, NX., Kim, MY. Overexpression and oral immunogenicity of a dengue antigen transiently expressed in Nicotiana benthamiana . Plant Cell Tiss Organ Cult 131, 567–577 (2017). https://doi.org/10.1007/s11240-017-1306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1306-4

Keywords

Navigation