Skip to main content
Log in

Generation of genetically stable transformants by Agrobacterium using tomato floral buds

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Tomato (Solanum lycopersicum) is a model crop plant for the study of fruit ripening and disease resistance. Here we present a systemic study on in planta transformation of tomato with Agrobacterium tumefaciens strain LBA4404 harboring pCAMBIA1303 binary vector bearing HPTII as a plant selectable marker and mGFP/GUS fusion as the reporter gene. We attempted the transformation of tomato at different developmental stages viz. during seed germination, seedling growth, and floral bud development. The imbibition of seeds with Agrobacterium suspension led to seed mortality. The vacuum infiltration of seedlings with Agrobacterium suspension led to sterility in surviving plants. Successful transformation could be achieved either by dipping of developing floral buds in the Agrobacterium suspension or by injecting Agrobacterium into the floral buds. Most floral buds subjected to dip as well as to injection either aborted or had arrested development. The pollination of surviving floral buds with pollen from wild-type plants yielded fruits bearing seeds. A transformation efficiency of 0.25–0.50% was obtained on floral dips/floral injections. Transgenic plants were selected by screening seedlings for hygromycin resistance. The presence of the transgene in genomic DNA was confirmed by Southern blot analysis and expression of the reporter gene up to the T4 generation. The amenability of tomato for in planta transformation simplifies the generation of transgenic tomato plants obviating intervening tissue culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci III-Vie 316:1194–1199

    CAS  Google Scholar 

  • Bechtold N, Jaudeau B, Jolivet S, Maba B, Vezon D, Voisin R, Pelletier G (2000) The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 155:1875–1887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bent AF (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bent A (2006) Arabidopsis thaliana floral dip transformation method. Methods Mol Biol 343:87–103

    CAS  PubMed  Google Scholar 

  • Brukhin V, Hernould M, Gonzalez N, Chevalier C, Mouras A (2003) Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry. Sex Plant Rep 15:311–320

    Google Scholar 

  • Christou P (1996) Transformation technology. Trends Plant Sci 1:423–431

    Article  Google Scholar 

  • Chumakov M, Rozhok N, Velikov V, Tyrnov V, Volokhina I (2006) Agrobacterium-mediated in planta transformation of maize via pistil filaments. Russ. J Genet 42:893–897

    CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Curtis IS, Nam HG (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method–plant development and surfactant are important in optimizing transformation efficiency. Trans Res 10:363–371

    Article  CAS  Google Scholar 

  • Dan Y, Yan H, Munyikwa T, Dong J, Zhang Y, Armstrong CL (2006) MicroTom—a high-throughput model transformation system for functional genomics. Plant Cell Rep 25:432–441

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA mini preparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmanuel E, Levy AA (2002) Tomato mutants as tools for functional genomics. Curr Opin Plant Biol 5:112–117

    Article  CAS  PubMed  Google Scholar 

  • Feldmann KA, Marks MD (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet MGG 208:1–9

    Article  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  CAS  PubMed  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess D, Dressler K, Nimmrichter R (1990) Transformation experiments by pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sci 72:233–244

    Article  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Iwahori S (1965) High temperature injuries in tomato. IV. Development of normal flower buds and morphological abnormalities of flower buds treated with high temperature. J Jpn Soc Hort Sci 34:33–41

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manickavasagam M, Subramanyam K, Ishwarya R, Elayaraja D, Ganapathi A (2015) Assessment of factors influencing the tissue culture-independent Agrobacterium-mediated in planta genetic transformation of okra [Abelmoschus esculentus (L.) Moench]. Plant Cell Tiss Org Cult 123:309–320

    Article  CAS  Google Scholar 

  • Mayavan S, Subramanyam K, Arun M, Rajesh M, Dev GK, Sivanandhan G, Jaganath B, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Agrobacterium tumefaciens-mediated in planta seed transformation strategy in sugarcane. Plant Cell Rep 32:1557–1574

    Article  CAS  PubMed  Google Scholar 

  • Mohanty D, Chandra A, Tandon R (2016) Germline transformation for crop improvement. In: Molecular breeding for sustainable crop improvement. Springer, New York, pp 343–395. doi:10.1007/978-3-319-27090-6$414

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Qing CM, Fan L, Lei Y, Bouchez D, Tourneur C, Yan L, Robaglia C (2000) Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol Breed 6:67–72

    Article  CAS  Google Scholar 

  • Quadrana L, Rodriguez MC, López M, Bermudez L, Nunes-Nesi A, Fernie AR, Descalzo A, Asis R, Rossi M, Asurmendi S (2011) Coupling virus-induced gene silencing to exogenous green fluorescence protein expression provides a highly efficient system for functional genomics in Arabidopsis and across all stages of tomato fruit development. Plant Physiol 156:1278–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha P, Blumwald E (2016) Spike dip transformation of Setaria viridis. Plant J 86:89–101

    Article  CAS  PubMed  Google Scholar 

  • Sallaud C, Meynard D, Van Boxtel J, Gay C, Bes M, Brizard J, Larmande P, Ortega D, Raynal M, Portefaix M (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory, New York

    Google Scholar 

  • Shah SH, Ali S, Jan SA, Ali GM (2015) Piercing and incubation method of in planta transformation producing stable transgenic plants by overexpressing DREB1A gene in tomato (Solanum lycopersicum Mill.). Plant Cell Tiss Org Cult 120:1139–1157

    Article  CAS  Google Scholar 

  • Siemering KR, Golbik R, Sever R, Haseloff J (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr Biol 6:1653–1663

    Article  CAS  PubMed  Google Scholar 

  • Sun H-J, Uchii S, Watanabe S, Ezura H (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431

    Article  CAS  PubMed  Google Scholar 

  • Supartana P, Shimizu T, Shioiri H, Nogawa M, Nozue M, Kojima M (2005) Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. J Biosci Bioeng 100:391–397

    Article  CAS  PubMed  Google Scholar 

  • Tague BW (2001) Germ-line transformation of Arabidopsis lasiocarpa. Transgenic Res 10:259–267

    Article  CAS  PubMed  Google Scholar 

  • Tianzi C, ShenJie W, Jun Z, WangZhen G, TianZhen Z (2010) Pistil drip following pollination: a simple in planta Agrobacterium-mediated transformation in cotton. Biotechnol Lett 32:547–555

    Article  PubMed  Google Scholar 

  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541

    Article  CAS  PubMed  Google Scholar 

  • Vain P (2007) Thirty years of plant transformation technology development. Plant Biotech J 5:221–229

    Article  CAS  Google Scholar 

  • Van Eck J, Kirk DD, Walmsley AM (2006) Tomato (Lycopersicum esculentum). Methods Mol Biol 343:459–473

    PubMed  Google Scholar 

  • Wang Q-M, Wang L (2012) An evolutionary view of plant tissue culture: somaclonal variation and selection. Plant Cell Rep 31:1535–1547

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Ye S, Li J, Zheng B, Bao M, Ning G (2011) Fusion primer and nested integrated PCR (FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning. BMC Biotechnol 11:1. doi:10.1186/1472-6750-11-109

    Article  CAS  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotech J 3:259–273

    Article  CAS  Google Scholar 

  • Yang L, Wang C, Wang L, Xu C, Chen K (2013) An efficient multiplex PCR assay for early detection of Agrobacterium tumefaciens in transgenic plant materials. Turk J Agri For 37:157–162

    CAS  Google Scholar 

  • Yasmeen A, Mirza B, Inayatullah S, Safdar N, Jamil M, Ali S, Choudhry MF (2009) In planta transformation of tomato. Plant Mol Biol Rep 27:20–28

    Article  CAS  Google Scholar 

  • Ye GN, Stone D, Pang SZ, Creely W, Gonzalez K, Hinchee M (1999) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J 19:249–257

    Article  PubMed  Google Scholar 

  • Zale JM, Agarwal S, Loar S, Steber C (2009) Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep 28:903–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Department of Biotechnology (Grant No. BT/PR6803/PBD/16/621/2005 and BT/PR11671/PBD/16/828/2008 to R.S. and Y.S.).

Author contributions

MSS carried out transformation and characterization of T1–T3 plants. AK carried out the characterization of T4 plants, FPNI-PCR, and multiplex PCR. AK, AKP, SS and PS contributed to the Southern analysis. MSS and RS designed the experimental protocols. MSS, AK, YS, and RS wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rameshwar Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Miduthuri Satya Sharada and Alka Kumari have equally contributed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 13843 KB)

Supplementary material 2 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharada, M.S., Kumari, A., Pandey, A.K. et al. Generation of genetically stable transformants by Agrobacterium using tomato floral buds. Plant Cell Tiss Organ Cult 129, 299–312 (2017). https://doi.org/10.1007/s11240-017-1178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1178-7

Keywords

Navigation