Skip to main content

Advertisement

Log in

Effects of colchicine on tissue factor in oxLDL-activated T-lymphocytes

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Several studies have shown that T-cells might be involved in pathophysiology of acute coronary syndromes (ACS). Tissue factor (TF) plays a key role in ACS. Many evidences have indicated that some statins reduce TF expression in several cell types. However, literature about rosuvastatin and TF and about statins effects on T-cells is still scanty. Colchicine is an anti-inflammatory drug recently proven to have beneficial effects in ACS via unknown mechanisms. This study investigates the effects of colchicine and rosuvastatin on TF expression in oxLDL-activated T-cells. T-cells, isolated from buffy coats of healthy volunteers, were stimulated with oxLDL (50 µg/dL). T-cells were pre-incubated with colchicine (10 µM) or rosuvastatin (5 µM) for 1 h and then stimulated with oxLDL (50 μg/mL). TF gene (RT-PCR), protein (western blot), surface expression (FACS) and procoagulant activity (FXa generation assay) were measured. NF-κB/IκB axis was examined by western blot analysis and translocation assay. Colchicine and rosuvastatin significantly reduced TF gene, and protein expression and procoagulant activity in oxLDL stimulated T-cells. This effect was associated with a significant reduction in TF surface expression as well as its procoagulant activity. These phenomena appear modulated by drug effects on the transcription factor NF-kB. Rosuvastatin and colchicine prevent TF expression in oxLDL-stimulated T-cells by modulating the NF-κB/IκB axis. Thus, we speculate that this might be another mechanism by which these drugs exert benefic cardiovascular effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boren J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ et al (2020) Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 41:2313–2330. https://doi.org/10.1093/eurheartj/ehz962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Di Pietro N, Formoso G, Pandolfi A (2016) Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vasc Pharmacol 84:1–7. https://doi.org/10.1016/j.vph.2016.05.013

    Article  CAS  Google Scholar 

  3. Simionescu M (2007) Implications of early structural–functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 27:266–274. https://doi.org/10.1161/01.ATV.0000253884.13901.e4

    Article  CAS  PubMed  Google Scholar 

  4. Cimmino G, Loffredo FS, Morello A, D’Elia S, De Palma R, Cirillo P, Golino P (2017) Immune-inflammatory activation in acute coronary syndromes: a look into the heart of unstable coronary plaque. Curr Cardiol Rev 13:110–117. https://doi.org/10.2174/1573403X12666161014093812

    Article  PubMed  PubMed Central  Google Scholar 

  5. Profumo E, Buttari B, Tosti ME, Tagliani A, Capoano R, D’Amati G, Businaro R, Salvati B, Rigano R (2013) Plaque-infiltrating T lymphocytes in patients with carotid atherosclerosis: an insight into the cellular mechanisms associated to plaque destabilization. J Cardiovasc Surg 54:349–357

    CAS  Google Scholar 

  6. Samson S, Mundkur L, Kakkar VV (2012) Immune response to lipoproteins in atherosclerosis. Cholesterol 2012:571846. https://doi.org/10.1155/2012/571846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6:508–519. https://doi.org/10.1038/nri1882

    Article  CAS  PubMed  Google Scholar 

  8. De Palma R, Del Galdo F, Abbate G, Chiariello M, Calabro R, Forte L, Cimmino G, Papa MF, Russo MG, Ambrosio G et al (2006) Patients with acute coronary syndrome show oligoclonal T-cell recruitment within unstable plaque: evidence for a local, intracoronary immunologic mechanism. Circulation 113:640–646. https://doi.org/10.1161/CIRCULATIONAHA.105.537712

    Article  PubMed  Google Scholar 

  9. De Palma R, Cirillo P, Ciccarelli G, Barra G, Conte S, Pellegrino G, Pasquale G, Nassa G, Pacifico F, Leonardi A et al (2016) Expression of functional tissue factor in activated T-lymphocytes in vitro and in vivo: a possible contribution of immunity to thrombosis? Int J Cardiol 218:188–195. https://doi.org/10.1016/j.ijcard.2016.04.177

    Article  PubMed  Google Scholar 

  10. Oesterle A, Laufs U, Liao JK (2017) Pleiotropic effects of statins on the cardiovascular system. Circ Res 120:229–243. https://doi.org/10.1161/CIRCRESAHA.116.308537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu D, Liao JK (2021) Emerging views of statin pleiotropy and cholesterol lowering. Cardiovasc Res. https://doi.org/10.1093/cvr/cvab032

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hilgendorff A, Muth H, Parviz B, Staubitz A, Haberbosch W, Tillmanns H, Holschermann H (2003) Statins differ in their ability to block NF-kappaB activation in human blood monocytes. Int J Clin Pharmacol Ther 41:397–401. https://doi.org/10.5414/cpp41397

    Article  CAS  PubMed  Google Scholar 

  13. Banfi C, Brioschi M, Lento S, Pirillo A, Galli S, Cosentino S, Tremoli E, Mussoni L (2011) Statins prevent tissue factor induction by protease-activated receptors 1 and 2 in human umbilical vein endothelial cells in vitro. J Thromb Haemost 9:1608–1619. https://doi.org/10.1111/j.1538-7836.2011.04366.x

    Article  CAS  PubMed  Google Scholar 

  14. Panes O, Gonzalez C, Hidalgo P, Valderas JP, Acevedo M, Contreras S, Sanchez X, Pereira J, Rigotti A, Mezzano D (2017) Platelet tissue factor activity and membrane cholesterol are increased in hypercholesterolemia and normalized by rosuvastatin, but not by atorvastatin. Atherosclerosis 257:164–171. https://doi.org/10.1016/j.atherosclerosis.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  15. Ridker PM, Thuren T, Zalewski A, Libby P (2011) Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J 162:597–605. https://doi.org/10.1016/j.ahj.2011.06.012

    Article  CAS  PubMed  Google Scholar 

  16. Everett BM, Pradhan AD, Solomon DH, Paynter N, Macfadyen J, Zaharris E, Gupta M, Clearfield M, Libby P, Hasan AA et al (2013) Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis. Am Heart J 166:199–207. https://doi.org/10.1016/j.ahj.2013.03.018

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, The SHK, Xu XF, Ireland MA, Lenderink T et al (2020) Colchicine in patients with chronic coronary disease. N Engl J Med 383:1838–1847. https://doi.org/10.1056/NEJMoa2021372

    Article  CAS  PubMed  Google Scholar 

  18. Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS et al (2019) Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381:2497–2505. https://doi.org/10.1056/NEJMoa1912388

    Article  CAS  PubMed  Google Scholar 

  19. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL (2013) Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol 61:404–410. https://doi.org/10.1016/j.jacc.2012.10.027

    Article  CAS  PubMed  Google Scholar 

  20. Cimmino G, Tarallo R, Conte S, Morello A, Pellegrino G, Loffredo FS, Cali G, De Luca N, Golino P, Trimarco B et al (2018) Colchicine reduces platelet aggregation by modulating cytoskeleton rearrangement via inhibition of cofilin and LIM domain kinase 1. Vascul Pharmacol 111:62–70. https://doi.org/10.1016/j.vph.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  21. Cirillo P, Taglialatela V, Pellegrino G, Morello A, Conte S, Di Serafino L, Cimmino G (2020) Effects of colchicine on platelet aggregation in patients on dual antiplatelet therapy with aspirin and clopidogrel. J Thromb Thrombol 50:468–472. https://doi.org/10.1007/s11239-020-02121-8

    Article  CAS  Google Scholar 

  22. Cimmino G, Conte S, Morello A, Pellegrino G, Marra L, Cali G, Golino P, Cirillo P (2021) Colchicine inhibits the prothrombotic effects of oxLDL in human endothelial cells. Vasc Pharmacol 137:106822. https://doi.org/10.1016/j.vph.2020.106822

    Article  CAS  Google Scholar 

  23. Cimmino G, Ibanez B, Vilahur G, Speidl WS, Fuster V, Badimon L, Badimon JJ (2009) Up-regulation of reverse cholesterol transport key players and rescue from global inflammation by ApoA-I(Milano). J Cell Mol Med 13:3226–3235. https://doi.org/10.1111/j.1582-4934.2008.00614.x

    Article  PubMed  Google Scholar 

  24. Cimmino G, Cirillo P, Conte S, Pellegrino G, Barra G, Maresca L, Morello A, Cali G, Loffredo F, De Palma R et al (2020) Oxidized low-density lipoproteins induce tissue factor expression in T-lymphocytes via activation of lectin-like oxidized low-density lipoprotein receptor-1. Cardiovasc Res 116:1125–1135. https://doi.org/10.1093/cvr/cvz230

    Article  CAS  PubMed  Google Scholar 

  25. Huggett JF (2020) The digital MIQE guidelines update: minimum information for publication of quantitative digital PCR experiments for 2020. Clin Chem 66:1012–1029. https://doi.org/10.1093/clinchem/hvaa125

    Article  PubMed  Google Scholar 

  26. Oeth P, Parry GC, Mackman N (1997) Regulation of the tissue factor gene in human monocytic cells. Role of AP-1, NF-kappa B/Rel, and Sp1 proteins in uninduced and lipopolysaccharide-induced expression. Arterioscler Thromb Vasc Biol 17:365–374. https://doi.org/10.1161/01.atv.17.2.365

    Article  CAS  PubMed  Google Scholar 

  27. Cirillo P, Conte S, Cimmino G, Pellegrino G, Ziviello F, Barra G, Sasso FC, Borgia F, De Palma R, Trimarco B (2017) Nobiletin inhibits oxidized-LDL mediated expression of tissue factor in human endothelial cells through inhibition of NF-kappaB. Biochem Pharmacol 128:26–33. https://doi.org/10.1016/j.bcp.2016.12.016

    Article  CAS  PubMed  Google Scholar 

  28. Wolf D, Ley K (2019) Immunity and inflammation in atherosclerosis. Circ Res 124:315–327. https://doi.org/10.1161/CIRCRESAHA.118.313591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Riksen NP, Stienstra R (2018) Metabolism of innate immune cells: impact on atherosclerosis. Curr Opin Lipidol 29:359–367. https://doi.org/10.1097/MOL.0000000000000539

    Article  CAS  PubMed  Google Scholar 

  30. Chistiakov DA, Orekhov AN, Bobryshev YV (2016) Immune-inflammatory responses in atherosclerosis: role of an adaptive immunity mainly driven by T and B cells. Immunobiology 221:1014–1033. https://doi.org/10.1016/j.imbio.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  31. Schaftenaar F, Frodermann V, Kuiper J, Lutgens E (2016) Atherosclerosis: the interplay between lipids and immune cells. Curr Opin Lipidol 27:209–215. https://doi.org/10.1097/MOL.0000000000000302

    Article  CAS  PubMed  Google Scholar 

  32. Cirillo P, Cimmino G, D’Aiuto E, Di Palma V, Abbate G, Piscione F, Golino P, De Palma R (2014) Local cytokine production in patients with acute coronary syndromes: a look into the eye of the perfect (cytokine) storm. Int J Cardiol 176:227–229. https://doi.org/10.1016/j.ijcard.2014.05.035

    Article  PubMed  Google Scholar 

  33. Gotsman I, Sharpe AH, Lichtman AH (2008) T-cell costimulation and coinhibition in atherosclerosis. Circ Res 103:1220–1231. https://doi.org/10.1161/CIRCRESAHA.108.182428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liuzzo G, Goronzy JJ, Yang H, Kopecky SL, Holmes DR, Frye RL, Weyand CM (2000) Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 101:2883–2888. https://doi.org/10.1161/01.cir.101.25.2883

    Article  CAS  PubMed  Google Scholar 

  35. Aukrust P, Otterdal K, Yndestad A, Sandberg WJ, Smith C, Ueland T, Oie E, Damas JK, Gullestad L, Halvorsen B (2008) The complex role of T-cell-based immunity in atherosclerosis. Curr Atheroscler Rep 10:236–243. https://doi.org/10.1007/s11883-008-0037-8

    Article  CAS  PubMed  Google Scholar 

  36. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK (1995) T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA 92:3893–3897. https://doi.org/10.1073/pnas.92.9.3893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Santos-Gallego CG, Picatoste B, Badimon JJ (2014) Pathophysiology of acute coronary syndrome. Curr Atheroscler Rep 16:401. https://doi.org/10.1007/s11883-014-0401-9

    Article  CAS  PubMed  Google Scholar 

  38. Sever PS, Dahlof B, Poulter NR, Wedel H, Beevers G, Caulfield M, Collins R, Kjeldsen SE, Kristinsson A, McInnes GT et al (2003) Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 361:1149–1158. https://doi.org/10.1016/S0140-6736(03)12948-0

    Article  CAS  PubMed  Google Scholar 

  39. Scandinavian Simvastatin Survival Study Group (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344:1383–1389

    Google Scholar 

  40. Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D, Zeiher A, Chaitman BR, Leslie S, Stern T et al (2001) Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA 285:1711–1718. https://doi.org/10.1001/jama.285.13.1711

    Article  CAS  PubMed  Google Scholar 

  41. Serruys PW, de Feyter P, Macaya C, Kokott N, Puel J, Vrolix M, Branzi A, Bertolami MC, Jackson G, Strauss B et al (2002) Fluvastatin for prevention of cardiac events following successful first percutaneous coronary intervention: a randomized controlled trial. JAMA 287:3215–3222. https://doi.org/10.1001/jama.287.24.3215

    Article  CAS  PubMed  Google Scholar 

  42. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG et al (2008) Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 359:2195–2207. https://doi.org/10.1056/NEJMoa0807646

    Article  CAS  PubMed  Google Scholar 

  43. Karmaus PW, Shi M, Perl S, Biancotto A, Candia J, Cheung F, Kotliarov Y, Young N, Fessler MB (2019) Effects of rosuvastatin on the immune system in healthy volunteers with normal serum cholesterol. JCI Insight. https://doi.org/10.1172/jci.insight.131530

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen LW, Lin CS, Tsai MC, Shih SF, Lim ZW, Chen SJ, Tsui PF, Ho LJ, Lai JH, Liou JT (2019) Pitavastatin exerts potent anti-inflammatory and immunomodulatory effects via the suppression of AP-1 signal transduction in human T cells. Int J Mol Sci. https://doi.org/10.3390/ijms20143534

    Article  PubMed  PubMed Central  Google Scholar 

  45. Slobodnick A, Shah B, Pillinger MH, Krasnokutsky S (2015) Colchicine: old and new. Am J Med 128:461–470. https://doi.org/10.1016/j.amjmed.2014.12.010

    Article  CAS  PubMed  Google Scholar 

  46. Leung YY, Yao Hui LL, Kraus VB (2015) Colchicine-update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum 45:341–350. https://doi.org/10.1016/j.semarthrit.2015.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Adler Y, Charron P, Imazio M, Badano L, Baron-Esquivias G, Bogaert J, Brucato A, Gueret P, Klingel K, Lionis C et al (2015) 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC)Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 36:2921–2964. https://doi.org/10.1093/eurheartj/ehv318

    Article  PubMed  Google Scholar 

  48. Martinez GJ, Robertson S, Barraclough J, Xia Q, Mallat Z, Bursill C, Celermajer DS, Patel S (2015) Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome. J Am Heart Assoc 4:e002128. https://doi.org/10.1161/JAHA.115.002128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamamoto Y, Gaynor RB (2004) IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci 29:72–79. https://doi.org/10.1016/j.tibs.2003.12.003

    Article  CAS  PubMed  Google Scholar 

  50. Mackman N (1997) Regulation of the tissue factor gene. Thromb Haemost 78:747–754

    Article  CAS  PubMed  Google Scholar 

  51. de Winther MP, Kanters E, Kraal G, Hofker MH (2005) Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 25:904–914. https://doi.org/10.1161/01.ATV.0000160340.72641.87

    Article  CAS  PubMed  Google Scholar 

  52. Aggarwal BB, Takada Y, Shishodia S, Gutierrez AM, Oommen OV, Ichikawa H, Baba Y, Kumar A (2004) Nuclear transcription factor NF-kappa B: role in biology and medicine. Indian J Exp Biol 42:341–353

    CAS  PubMed  Google Scholar 

  53. Cao Y, Zhou X, Liu H, Zhang Y, Yu X, Liu C (2013) The NF-kappaB pathway: regulation of the instability of atherosclerotic plaques activated by Fg, Fb, and FDPs. Mol Cell Biochem 383:29–37. https://doi.org/10.1007/s11010-013-1751-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liuzzo G, Santamaria M, Biasucci LM, Narducci M, Colafrancesco V, Porto A, Brugaletta S, Pinnelli M, Rizzello V, Maseri A et al (2007) Persistent activation of nuclear factor kappa-B signaling pathway in patients with unstable angina and elevated levels of C-reactive protein evidence for a direct proinflammatory effect of azide and lipopolysaccharide-free C-reactive protein on human monocytes via nuclear factor kappa-B activation. J Am Coll Cardiol 49:185–194. https://doi.org/10.1016/j.jacc.2006.07.071

    Article  CAS  PubMed  Google Scholar 

  55. Wilson SH, Best PJ, Edwards WD, Holmes DR Jr, Carlson PJ, Celermajer DS, Lerman A (2002) Nuclear factor-kappaB immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris. Atherosclerosis 160:147–153. https://doi.org/10.1016/s0021-9150(01)00546-9

    Article  CAS  PubMed  Google Scholar 

  56. Ritchie ME (1998) Nuclear factor-kappaB is selectively and markedly activated in humans with unstable angina pectoris. Circulation 98:1707–1713. https://doi.org/10.1161/01.cir.98.17.1707

    Article  CAS  PubMed  Google Scholar 

  57. Cirillo P, Ziviello F, Pellegrino G, Conte S, Cimmino G, Giaquinto A, Pacifico F, Leonardi A, Golino P, Trimarco B (2015) The adipokine apelin-13 induces expression of prothrombotic tissue factor. Thromb Haemost 113:363–372. https://doi.org/10.1160/TH14-05-0451

    Article  PubMed  Google Scholar 

  58. Cirillo P, Di Palma V, Maresca F, Pacifico F, Ziviello F, Bevilacqua M, Trimarco B, Leonardi A, Chiariello M (2012) The adipokine visfatin induces tissue factor expression in human coronary artery endothelial cells: another piece in the adipokines puzzle. Thromb Res 130:403–408. https://doi.org/10.1016/j.thromres.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  59. Calabro P, Cirillo P, Limongelli G, Maddaloni V, Riegler L, Palmieri R, Pacileo G, De Rosa S, Pacileo M, De Palma R et al (2011) Tissue factor is induced by resistin in human coronary artery endothelial cells by the NF-kB-dependent pathway. J Vasc Res 48:59–66. https://doi.org/10.1159/000318775

    Article  CAS  PubMed  Google Scholar 

  60. Dichtl W, Dulak J, Frick M, Alber HF, Schwarzacher SP, Ares MP, Nilsson J, Pachinger O, Weidinger F (2003) HMG-CoA reductase inhibitors regulate inflammatory transcription factors in human endothelial and vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23:58–63. https://doi.org/10.1161/01.atv.0000043456.48735.20

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present work have received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plinio Cirillo.

Ethics declarations

Conflict of interest

None of the authors has had a relationship with the industry within the past 2 years that might pose a conflict of interest in connection with this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cirillo, P., Conte, S., Pellegrino, G. et al. Effects of colchicine on tissue factor in oxLDL-activated T-lymphocytes. J Thromb Thrombolysis 53, 739–749 (2022). https://doi.org/10.1007/s11239-021-02585-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-021-02585-2

Keywords

Navigation