Skip to main content

Advertisement

Log in

Pathophysiology of Acute Coronary Syndrome

  • Coronary Heart Disease (JA Farmer, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Despite improvements in interventional and pharmacological therapy for atherosclerotic disease, it is still the leading cause of death in the developed world. Hence, there is a need for further development of more effective therapeutic approaches. This requires better understanding of the molecular mechanisms and pathophysiology of the disease. Recent research in the last decade has changed our view of acute coronary syndrome (ACS): from a mere lipid deposition to an inflammatory disease; from ACS exclusively due to plaque rupture to the novel definitions of plaque erosion or calcified nodule; from the notion of a superimposed thrombus with necessary lethal consequences to the concept of healed plaques and thrombus contributing to plaque progression. In the hope of improving our understanding of ACS, all these recently discovered concepts are reviewed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125:e2–e220.

    Article  PubMed  Google Scholar 

  2. Folsom AR, Yatsuya H, Nettleton JA, Lutsey PL, Cushman M, Rosamond WD. Community prevalence of ideal cardiovascular health, by the American Heart Association definition, and relationship with cardiovascular disease incidence. J Am Coll Cardiol. 2011;57:1690–6. This is an interesting article highlighting the poor cardiovascular health in the modern world. In this community-based sample of 12,744 patients from the ARIC study, only 0.1 % had ideal cardiovascular health as per the new American Heart Association definition. Those who had the best levels of cardiovascular health nevertheless experienced relatively few events.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123:933–44.

    Article  PubMed  Google Scholar 

  4. Berenson GS, Srinivasan SR, Bao W, Newman 3rd WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;338:1650–6.

    Article  PubMed  CAS  Google Scholar 

  5. Nemetz PN, Roger VL, Ransom JE, Bailey KR, Edwards WD, Leibson CL. Recent trends in the prevalence of coronary disease: a population-based autopsy study of nonnatural deaths. Arch Intern Med. 2008;168:264–70.

    Article  PubMed  Google Scholar 

  6. Rajavashisth T, Qiao JH, Tripathi S, et al. Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice. J Clin Invest. 1998;101:2702–10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Woollard KJ, Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol. 2010;7:77–86.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989;74:2527–34.

    PubMed  CAS  Google Scholar 

  9. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64.

    Article  PubMed  CAS  Google Scholar 

  10. Ferrante G, Nakano M, Prati F, et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: a clinicopathological study. Circulation. 2010;122:2505–13.

    Article  PubMed  CAS  Google Scholar 

  11. Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation. 2010;121:2437–45.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Swirski FK, Libby P, Aikawa E, et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest. 2007;117:195–205.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Purushothaman M, Krishnan P, Purushothaman KR, et al. Genotype-dependent impairment of hemoglobin clearance increases oxidative and inflammatory response in human diabetic atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:2769–75. Haptoglobin is responsible for hemoglobin clearance after plaque hemorrhage. The haptoglobin 2–2 genotype causes reduced clearance of hemoglobin, thus creating polarization of the macrophages to M1 response, and increased oxidative, inflammatory, and angiogenic response in human diabetic atherosclerosis.

    Article  PubMed  CAS  Google Scholar 

  14. Purushothaman KR, Purushothaman M, Levy AP, et al. Increased expression of oxidation-specific epitopes and apoptosis are associated with haptoglobin genotype: possible implications for plaque progression in human atherosclerosis. J Am Coll Cardiol. 2012;60:112–9.

    Article  PubMed  CAS  Google Scholar 

  15. Drechsler M, Megens RT, van Zandvoort M, Weber C, Soehnlein O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation. 2010;122:1837–45.

    Article  PubMed  CAS  Google Scholar 

  16. Ionita MG, van den Borne P, Catanzariti LM, et al. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler Thromb Vasc Biol. 2010;30:1842–8.

    Article  PubMed  CAS  Google Scholar 

  17. Sun J, Sukhova GK, Wolters PJ, et al. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med. 2007;13:719–24.

    Article  PubMed  CAS  Google Scholar 

  18. Healey JS, Toff WD, Lamas GA, et al. Cardiovascular outcomes with atrial-based pacing compared with ventricular pacing: meta-analysis of randomized trials, using individual patient data. Circulation. 2006;114:11–7.

    Article  PubMed  Google Scholar 

  19. Vogl T, Tenbrock K, Ludwig S, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007;13:1042–9.

    Article  PubMed  CAS  Google Scholar 

  20. Viemann D, Barczyk K, Vogl T, et al. MRP8/MRP14 impairs endothelial integrity and induces a caspase-dependent and -independent cell death program. Blood. 2007;109:2453–60.

    Article  PubMed  CAS  Google Scholar 

  21. Huber SA, Sakkinen P, David C, Newell MK, Tracy RP. T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation. 2001;103:2610–6.

    Article  PubMed  CAS  Google Scholar 

  22. Zhou X, Nicoletti A, Elhage R, Hansson GK. Transfer of CD4+ T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation. 2000;102:2919–22.

    Article  PubMed  CAS  Google Scholar 

  23. Binder CJ, Hartvigsen K, Chang MK, et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest. 2004;114:427–37.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Shimizu K, Shichiri M, Libby P, Lee RT, Mitchell RN. Th2-predominant inflammation and blockade of IFN-γ signaling induce aneurysms in allografted aortas. J Clin Invest. 2004;114:300–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK. Disruption of TGF-β signaling in T cells accelerates atherosclerosis. J Clin Invest. 2003;112:1342–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Ludewig B, Freigang S, Jaggi M, et al. Linking immune-mediated arterial inflammation and cholesterol-induced atherosclerosis in a transgenic mouse model. Proc Natl Acad Sci U S A. 2000;97:12752–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Tupin E, Nicoletti A, Elhage R, et al. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J Exp Med. 2004;199:417–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest. 2002;109:745–53.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Chou MY, Hartvigsen K, Hansen LF, et al. Oxidation-specific epitopes are important targets of innate immunity. J Intern Med. 2008;263:479–88.

    Article  PubMed  CAS  Google Scholar 

  30. Arbab-Zadeh A, Nakano M, Virmani R, Fuster V. Acute coronary events. Circulation. 2013;125:1147–56. This is a comprehensive review of the pathophysiology of ACS.

    Article  Google Scholar 

  31. Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists’ view. Eur Heart J. 2013;34:719–28. This is an excellent review, both didactic and detailed, of the recent advances and updated classifications in the pathology of ACS.

    Article  PubMed  CAS  Google Scholar 

  32. Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103:934–40.

    Article  PubMed  CAS  Google Scholar 

  33. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262–75.

    Article  PubMed  CAS  Google Scholar 

  34. Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50:933–9.

    Article  PubMed  Google Scholar 

  35. Farb A, Burke AP, Tang AL, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 1996;93:1354–63.

    Article  PubMed  CAS  Google Scholar 

  36. Sugiyama S, Kugiyama K, Aikawa M, Nakamura S, Ogawa H, Libby P. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler Thromb Vasc Biol. 2004;24:1309–14.

    Article  PubMed  CAS  Google Scholar 

  37. Lee JB, Mintz GS, Lisauskas JB, et al. Histopathologic validation of the intravascular ultrasound diagnosis of calcified coronary artery nodules. Am J Cardiol. 2011;108:1547–51.

    Article  PubMed  Google Scholar 

  38. Xu Y, Mintz GS, Tam A, et al. Prevalence, distribution, predictors, and outcomes of patients with calcified nodules in native coronary arteries: a 3-vessel intravascular ultrasound analysis from Providing Regional Observations to Study Predictors of Events in the Coronary Tree (PROSPECT). Circulation. 2012;126:537–45. This was one of the first studies focusing on calcified nodules in the pathogenesis of ACS. Calcified nodules in untreated nonculprit coronary segments in patients with ACS were more prevalent than previously recognized (17 % per artery, 30 % per patient). Interestingly, calcified nodules caused fewer major adverse events during 3 years of follow-up in the PROSPECT trial.

    Article  PubMed  Google Scholar 

  39. Jia H, Abtahian F, Aguirre AD, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol. 2013;62:1748–58. Plaque erosion is a frequent finding in patients with ACS; patients with plaque erosion are younger, more frequently develop non-ST-elevation MI, and have less lipid core and a thicker fibrous cap. Calcified nodules are the least common cause of ACS, but are commoner in older patients.

    Article  PubMed  Google Scholar 

  40. Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation. 1998;97:2110–6.

    Article  PubMed  CAS  Google Scholar 

  41. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–82.

    Article  PubMed  CAS  Google Scholar 

  42. Kramer MC, Rittersma SZ, de Winter RJ, et al. Relationship of thrombus healing to underlying plaque morphology in sudden coronary death. J Am Coll Cardiol. 2010;55:122–32.

    Article  PubMed  Google Scholar 

  43. Narula J, Nakano M, Virmani R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol. 2013;61:1041–51. This study seeks to identify histopathological characteristics of vulnerable plaque which can be detected by imaging techniques. Thickness of the fibrous cap less than 55 μm is the best discriminator of plaque vulnerability, followed by necrotic core and macrophage infiltration.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35. This reports a very ambitious and well designed project prospectively studying which atherosclerosis lesions will develop ACS in the future. It was a true cornerstone in the studies of the pathophysiology of ACS.

    Article  PubMed  CAS  Google Scholar 

  45. Cheruvu PK, Finn AV, Gardner C, et al. Frequency and distribution of thin-cap fibroatheroma and ruptured plaques in human coronary arteries: a pathologic study. J Am Coll Cardiol. 2007;50:940–9.

    Article  PubMed  Google Scholar 

  46. Rioufol G, Finet G, Ginon I, et al. Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation. 2002;106:804–8.

    Article  PubMed  CAS  Google Scholar 

  47. Kubo T, Maehara A, Mintz GS, et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J Am Coll Cardiol. 2010;55:1590–7.

    Article  PubMed  CAS  Google Scholar 

  48. Zhao Z, Witzenbichler B, Mintz GS, et al. Dynamic nature of nonculprit coronary artery lesion morphology in STEMI: a serial IVUS analysis from the HORIZONS-AMI trial. JACC Cardiovasc Imaging. 2013;6:86–95. In ST-elevation MI patients, untreated nonculprit lesions did not change during 13-months of follow-up and were accompanied by a decrease in lumen area and an increase in necrotic core.

    Article  PubMed  Google Scholar 

  49. Giesen PL, Rauch U, Bohrmann B, et al. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci U S A. 1999;96:2311–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Bach RR. Tissue factor encryption. Arterioscler Thromb Vasc Biol. 2006;26:456–61.

    Article  PubMed  CAS  Google Scholar 

  51. Rautou PE, Vion AC, Amabile N, et al. Microparticles, vascular function, and atherothrombosis. Circ Res. 2011;109:593–606. This is a very detailed review of the role of microparticles in atherosclerosis development, progression, and complications by increasing inflammation, stimulating angiogenesis, promoting apoptosis, and stimulating a thrombogenic status in the blood.

    Article  PubMed  CAS  Google Scholar 

  52. Leroyer AS, Isobe H, Leseche G, et al. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol. 2007;49:772–7.

    Article  PubMed  CAS  Google Scholar 

  53. Rautou PE, Leroyer AS, Ramkhelawon B, et al. Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ Res. 2011;108:335–43. Microparticles isolated from human atherosclerotic plaques transfer ICAM-1 to endothelial cells to recruit inflammatory cells and this suggests that plaque microparticles promote atherosclerosis progression.

    Article  PubMed  CAS  Google Scholar 

  54. Carmeliet P, Mackman N, Moons L, et al. Role of tissue factor in embryonic blood vessel development. Nature. 1996;383:73–5.

    Article  PubMed  CAS  Google Scholar 

  55. Randolph GJ, Luther T, Albrecht S, Magdolen V, Muller WA. Role of tissue factor in adhesion of mononuclear phagocytes to and trafficking through endothelium in vitro. Blood. 1998;92:4167–77.

    PubMed  CAS  Google Scholar 

  56. Cirillo P, Cali G, Golino P, et al. Tissue factor binding of activated factor VII triggers smooth muscle cell proliferation via extracellular signal-regulated kinase activation. Circulation. 2004;109:2911–6.

    Article  PubMed  CAS  Google Scholar 

  57. Cirillo P, Golino P, Calabro P, et al. C-reactive protein induces tissue factor expression and promotes smooth muscle and endothelial cell proliferation. Cardiovasc Res. 2005;68:47–55.

    Article  PubMed  CAS  Google Scholar 

  58. Golino P, Ragni M, Cirillo P, et al. Effects of tissue factor induced by oxygen free radicals on coronary flow during reperfusion. Nat Med. 1996;2:35–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Carlos G. Santos-Gallego, Belen Picatoste, and Juan José Badimón declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Badimón.

Additional information

This article is part of the Topical Collection on Coronary Heart Disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos-Gallego, C.G., Picatoste, B. & Badimón, J.J. Pathophysiology of Acute Coronary Syndrome. Curr Atheroscler Rep 16, 401 (2014). https://doi.org/10.1007/s11883-014-0401-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-014-0401-9

Keywords

Navigation