Skip to main content
Log in

The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

P2Y12 receptors on platelets have long been the main target of antiplatelet drugs. However, a growing number of studies have revealed that P2Y12 receptor activation on microglia and vascular smooth muscle cells (VSMCs) also aggravates ischemic stroke injury. The proliferation and migration of VSMCs in the vascular wall have important influence on the early lesion of atherosclerosis, which may lead to the origin of cerebral ischemic attack of atherosclerosis. Blockage of cellular P2Y12 receptors could inhibit microglial activation, block formation of platelet-leukocyte aggregates, reduce proinflammatory cytokine levels and suppress migration and proliferation of VSMCs, implying that apart from anti-thrombotic effect, P2Y12 inhibitors have additional neuroprotective, anti-inflammatory and anti-atherosclerotic therapeutic benefits against ischemic stroke. In this review, we will summarize recent advances in studies on P2Y12 receptors and emphatically introduce their significance in microglia, platelets and VSMCs after ischemic stroke, discussing how to exert the beneficial effects of P2Y12 inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Radermacher KA, Wingler K, Langhauser F, Altenhofer S, Kleikers P, Hermans JJ, Hrabe de Angelis M, Kleinschnitz C, Schmidt HH (2013) Neuroprotection after stroke by targeting NOX4 as a source of oxidative stress. Antioxid Redox Signal 18(12):1418–1427. https://doi.org/10.1089/ars.2012.4797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ding G, Zhang Z, Chopp M, Li L, Zhang L, Li Q, Wei M, Jiang Q (2014) MRI evaluation of BBB disruption after adjuvant AcSDKP treatment of stroke with tPA in rat. Neuroscience 271:1–8. https://doi.org/10.1016/j.neuroscience.2014.04.025

    Article  CAS  PubMed  Google Scholar 

  3. Fitzgerald S, Dai D, Wang S, Douglas A, Kadirvel R, Layton KF, Thacker IC, Gounis MJ, Chueh JY, Puri AS, Almekhlafi M, Demchuk AM, Hanel RA, Sauvageau E, Aghaebrahim A, Yoo AJ, Kvamme P, Pereira VM, Kayan Y, Delgado Almandoz JE, Nogueira RG, Rabinstein AA, Kallmes DF, Doyle KM, Brinjikji W (2019) Platelet-rich emboli in cerebral large vessel occlusion are associated with a large artery atherosclerosis source. Stroke 50(7):1907–1910. https://doi.org/10.1161/strokeaha.118.024543

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rudijanto A (2007) The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta medica Indonesiana 39(2):86–93

    PubMed  Google Scholar 

  5. Bojakowski K, Religa P, Bojakowska M, Hedin U, Gaciong Z, Thyberg J (2000) Arteriosclerosis in rat aortic allografts: early changes in endothelial integrity and smooth muscle phenotype. Transplantation 70(1):65–72

    CAS  PubMed  Google Scholar 

  6. Gao Y, Yu C, Pi S, Mao L, Hu B (2019) The role of P2Y(12) receptor in ischemic stroke of atherosclerotic origin. Cell Mol Life Sci CMLS 76(2):341–354. https://doi.org/10.1007/s00018-018-2937-2

    Article  CAS  PubMed  Google Scholar 

  7. Moustafa RR, Baron JC (2008) Pathophysiology of ischaemic stroke: insights from imaging, and implications for therapy and drug discovery. Br J Pharmacol 153(Suppl 1):S44–54. https://doi.org/10.1038/sj.bjp.0707530

    Article  CAS  PubMed  Google Scholar 

  8. Lv J, Hu W, Yang Z, Li T, Jiang S, Ma Z, Chen F, Yang Y (2018) Focusing on claudin-5: a promising candidate in the regulation of BBB to treat ischemic stroke. Prog Neurobiol 161:79–96. https://doi.org/10.1016/j.pneurobio.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  9. Ju F, Ran Y, Zhu L, Cheng X, Gao H, Xi X, Yang Z, Zhang S (2018) Increased BBB permeability enhances activation of microglia and exacerbates loss of dendritic spines after transient global cerebral ischemia. Front Cell Neurosci 12:236. https://doi.org/10.3389/fncel.2018.00236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neumann J, Riek-Burchardt M, Herz J, Doeppner TR, Konig R, Hutten H, Etemire E, Mann L, Klingberg A, Fischer T, Gortler MW, Heinze HJ, Reichardt P, Schraven B, Hermann DM, Reymann KG, Gunzer M (2015) Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol 129(2):259–277. https://doi.org/10.1007/s00401-014-1355-2

    Article  CAS  PubMed  Google Scholar 

  11. Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD (2019) Global brain inflammation in stroke. Lancet Neurol. https://doi.org/10.1016/s1474-4422(19)30078-x

    Article  PubMed  Google Scholar 

  12. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, Horrow J, Husted S, James S, Katus H, Mahaffey KW, Scirica BM, Skene A, Steg PG, Storey RF, Harrington RA, Investigators P, Freij A, Thorsén M (2009) Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 361(11):1045–1057. https://doi.org/10.1056/NEJMoa0904327

    Article  CAS  PubMed  Google Scholar 

  13. Zeymer U, Cully M, Hochadel M (2018) Adherence to dual antiplatelet therapy with ticagrelor in patients with acute coronary syndromes treated with percutaneous coronary intervention in real life. Results of the REAL-TICA registry. Eur Heart J Cardiovasc Pharmacother 4(4):205–210. https://doi.org/10.1093/ehjcvp/pvy018

    Article  PubMed  Google Scholar 

  14. Hechler B, Gachet C (2015) Purinergic Receptors in Thrombosis and Inflammation. Arterioscler Thromb Vasc Biol 35(11):2307–2315. https://doi.org/10.1161/atvbaha.115.303395

    Article  CAS  PubMed  Google Scholar 

  15. Harada K, Matsumoto Y, Umemura K (2011) Adenosine diphosphate receptor P2Y12-mediated migration of host smooth muscle-like cells and leukocytes in the development of transplant arteriosclerosis. Transplantation 92(2):148–154. https://doi.org/10.1097/TP.0b013e318221d407

    Article  CAS  PubMed  Google Scholar 

  16. von Kugelgen I (2019) Pharmacology of P2Y receptors. Brain Res Bull. https://doi.org/10.1016/j.brainresbull.2019.03.010

    Article  Google Scholar 

  17. Chen Z, Zhong D, Li G (2019) The role of microglia in viral encephalitis: a review. J Neuroinflamm 16(1):76. https://doi.org/10.1186/s12974-019-1443-2

    Article  Google Scholar 

  18. Amadio S, Montilli C, Magliozzi R, Bernardi G, Reynolds R, Volonté C (2010) P2Y12 receptor protein in cortical gray matter lesions in multiple sclerosis. Cereb Cortex 20(6):1263–1273. https://doi.org/10.1093/cercor/bhp193

    Article  PubMed  Google Scholar 

  19. Moore CS, Ase AR, Kinsara A, Rao VTS, Michell-Robinson M, Leong SY, Butovsky O, Ludwin SK, Séguéla P, Bar-Or A, Antel JP (2015) P2Y12 expression and function in alternatively activated human microglia. Neurol Neuroimmunol Neuroinflamm 2(2):e80–e80. https://doi.org/10.1212/NXI.0000000000000080

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bernier LP, Bohlen CJ, York EM, Choi HB, Kamyabi A, Dissing-Olesen L, Hefendehl JK, Collins HY, Stevens B, Barres BA, MacVicar BA (2019) Nanoscale surveillance of the brain by microglia via cAMP-regulated filopodia. Cell Rep 27(10):2895–2908.e2894. https://doi.org/10.1016/j.celrep.2019.05.010

    Article  CAS  PubMed  Google Scholar 

  21. Nieswandt B (2012) Platelets guide lymphocytes to vascular injury sites. Thromb Haemost 108(2):207. https://doi.org/10.1160/th12-07-0450

    Article  CAS  PubMed  Google Scholar 

  22. Villa A, Klein B, Janssen B, Pedragosa J, Pepe G, Zinnhardt B, Vugts DJ, Gelosa P, Sironi L, Beaino W, Damont A, Dollé F, Jego B, Winkeler A, Ory D, Solin O, Vercouillie J, Funke U, Laner-Plamberger S, Blomster LV, Christophersen P, Vegeto E, Aigner L, Jacobs A, Planas AM, Maggi A, Windhorst AD (2018) Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state. Theranostics 8(19):5400–5418. https://doi.org/10.7150/thno.25572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Malko P, Syed Mortadza SA, McWilliam J, Jiang LH (2019) TRPM2 channel in microglia as a new player in neuroinflammation associated with a spectrum of central nervous system pathologies. Front Pharmacol 10:239. https://doi.org/10.3389/fphar.2019.00239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Swiatkowski P, Murugan M, Eyo UB, Wang Y, Rangaraju S, Oh SB, Wu LJ (2016) Activation of microglial P2Y12 receptor is required for outward potassium currents in response to neuronal injury. Neuroscience 318:22–33. https://doi.org/10.1016/j.neuroscience.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  25. da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FR (2014) The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 8:362. https://doi.org/10.3389/fncel.2014.00362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gelosa P, Lecca D, Fumagalli M, Wypych D, Pignieri A, Cimino M, Verderio C, Enerback M, Nikookhesal E, Tremoli E, Abbracchio MP, Sironi L (2014) Microglia is a key player in the reduction of stroke damage promoted by the new antithrombotic agent ticagrelor. J Cereb Blood Flow Metab 34(6):979–988. https://doi.org/10.1038/jcbfm.2014.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519. https://doi.org/10.1038/nn1805

    Article  CAS  PubMed  Google Scholar 

  28. Kluge MG, Kracht L, Abdolhoseini M, Ong LK, Johnson SJ, Nilsson M, Walker FR (2017) Impaired microglia process dynamics post-stroke are specific to sites of secondary neurodegeneration. Glia 65(12):1885–1899. https://doi.org/10.1002/glia.23201

    Article  PubMed  Google Scholar 

  29. Thurgur H, Pinteaux E (2019) Microglia in the neurovascular unit: blood-brain barrier-microglia interactions after central nervous system disorders. Neuroscience 405:55–67. https://doi.org/10.1016/j.neuroscience.2018.06.046

    Article  CAS  PubMed  Google Scholar 

  30. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y, Zheng P, Chen J (2015) Microglial and macrophage polarization—new prospects for brain repair. Nat Rev Neurol 11(1):56–64. https://doi.org/10.1038/nrneurol.2014.207

    Article  PubMed  Google Scholar 

  31. Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–3070. https://doi.org/10.1161/STROKEAHA.112.659656

    Article  CAS  PubMed  Google Scholar 

  32. Mancuso ME, Santagostino E (2017) Platelets: much more than bricks in a breached wall. Br J Haematol 178(2):209–219. https://doi.org/10.1111/bjh.14653

    Article  PubMed  Google Scholar 

  33. Janicki PK, Eyileten C, Ruiz-Velasco V, Sedeek KA, Pordzik J, Czlonkowska A, Kurkowska-Jastrzebska I, Sugino S, Imamura-Kawasawa Y, Mirowska-Guzel D, Postula M (2017) Population-specific associations of deleterious rare variants in coding region of P2RY1-P2RY12 purinergic receptor genes in large-vessel ischemic stroke patients. Int J Mol Sci 18(12):2678. https://doi.org/10.3390/ijms18122678

    Article  CAS  PubMed Central  Google Scholar 

  34. Rivera FJ, Kazanis I, Ghevaert C, Aigner L (2015) Beyond Clotting: A Role of Platelets in CNS Repair? Front Cell Neurosci 9:511. https://doi.org/10.3389/fncel.2015.00511

    Article  CAS  PubMed  Google Scholar 

  35. Thomas MR, Storey RF (2015) Effect of P2Y12 inhibitors on inflammation and immunity. Thromb Haemost 114(3):490–497. https://doi.org/10.1160/th14-12-1068

    Article  PubMed  Google Scholar 

  36. Nieswandt B, Kleinschnitz C, Stoll G (2011) Ischaemic stroke: a thrombo-inflammatory disease? J Physiol 589(17):4115–4123. https://doi.org/10.1113/jphysiol.2011.212886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nylander S, Schulz R (2016) Effects of P2Y12 receptor antagonists beyond platelet inhibition–comparison of ticagrelor with thienopyridines. Br J Pharmacol 173(7):1163–1178. https://doi.org/10.1111/bph.13429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maiocchi S, Alwis I, Wu MCL, Yuan Y, Jackson SP (2018) Thromboinflammatory functions of platelets in ischemia-reperfusion injury and its dysregulation in diabetes. Semin Thromb Hemost 44(2):102–113. https://doi.org/10.1055/s-0037-1613694

    Article  CAS  PubMed  Google Scholar 

  39. Xu XR, Zhang D, Oswald BE, Carrim N, Wang X, Hou Y, Zhang Q, Lavalle C, McKeown T, Marshall AH, Ni H (2016) Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit Rev Clin Lab Sci 53(6):409–430. https://doi.org/10.1080/10408363.2016.1200008

    Article  CAS  PubMed  Google Scholar 

  40. Koupenova M, Clancy L, Corkrey HA, Freedman JE (2018) Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res 122(2):337–351. https://doi.org/10.1161/circresaha.117.310795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ben Addi A, Cammarata D, Conley PB, Boeynaems JM, Robaye B (2010) Role of the P2Y12 receptor in the modulation of murine dendritic cell function by ADP. J Immunol 185(10):5900–5906. https://doi.org/10.4049/jimmunol.0901799

    Article  CAS  PubMed  Google Scholar 

  42. Stoll G, Nieswandt B (2019) Thrombo-inflammation in acute ischaemic stroke - implications for treatment. Nat Rev Neurol 15(8):473–481. https://doi.org/10.1038/s41582-019-0221-1

    Article  CAS  PubMed  Google Scholar 

  43. Wu L, Zhao F, Dai M, Li H, Chen C, Nie J, Wang P, Wang DW (2017) P2y12 receptor promotes pressure overload-induced cardiac remodeling via platelet-driven inflammation in mice. Hypertension 70(4):759–769. https://doi.org/10.1161/hypertensionaha.117.09262

    Article  CAS  PubMed  Google Scholar 

  44. Ma Y, Wang J, Wang Y, Yang GY (2017) The biphasic function of microglia in ischemic stroke. Prog Neurobiol 157:247–272. https://doi.org/10.1016/j.pneurobio.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  45. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflamm 16(1):142. https://doi.org/10.1186/s12974-019-1516-2

    Article  Google Scholar 

  46. Giles JA, Greenhalgh AD, Denes A, Nieswandt B, Coutts G, McColl BW, Allan SM (2018) Neutrophil infiltration to the brain is platelet-dependent, and is reversed by blockade of platelet GPIbalpha. Immunology 154(2):322–328. https://doi.org/10.1111/imm.12892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40(5):1849–1857. https://doi.org/10.1161/strokeaha.108.534503

    Article  PubMed  Google Scholar 

  48. Cheong A, Li J, Sukumar P, Kumar B, Zeng F, Riches K, Munsch C, Wood IC, Porter KE, Beech DJ (2011) Potent suppression of vascular smooth muscle cell migration and human neointimal hyperplasia by KV1.3 channel blockers. Cardiovasc Res 89(2):282–289. https://doi.org/10.1093/cvr/cvq305

    Article  CAS  PubMed  Google Scholar 

  49. Niu X, Pi SL, Baral S, Xia YP, He QW, Li YN, Jin HJ, Li M, Wang MD, Mao L, Hu B (2017) P2Y12 promotes migration of vascular smooth muscle cells through cofilin dephosphorylation during atherogenesis. Arterioscler Thromb Vasc Biol 37(3):515–524. https://doi.org/10.1161/atvbaha.116.308725

    Article  CAS  PubMed  Google Scholar 

  50. Satonaka H, Nagata D, Takahashi M, Kiyosue A, Myojo M, Fujita D, Ishimitsu T, Nagano T, Nagai R, Hirata Y (2015) Involvement of P2Y12 receptor in vascular smooth muscle inflammatory changes via MCP-1 upregulation and monocyte adhesion. Am J Physiol Heart Circ Physiol 308(8):H853–861. https://doi.org/10.1152/ajpheart.00862.2013

    Article  CAS  PubMed  Google Scholar 

  51. Rauch BH, Rosenkranz AC, Ermler S, Bohm A, Driessen J, Fischer JW, Sugidachi A, Jakubowski JA, Schror K (2010) Regulation of functionally active P2Y12 ADP receptors by thrombin in human smooth muscle cells and the presence of P2Y12 in carotid artery lesions. Arterioscler Thromb Vasc Biol 30(12):2434–2442. https://doi.org/10.1161/atvbaha.110.213702

    Article  CAS  PubMed  Google Scholar 

  52. Xu S, Fu J, Chen J, Xiao P, Lan T, Le K, Cheng F, He L, Shen X, Huang H, Liu P (2009) Development of an optimized protocol for primary culture of smooth muscle cells from rat thoracic aortas. Cytotechnology 61(1–2):65–72. https://doi.org/10.1007/s10616-009-9236-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao B, Zhao CZ, Zhang XY, Huang XQ, Shi WZ, Fang SH, Lu YB, Zhang WP, Xia Q, Wei EQ (2012) The new P2Y-like receptor G protein-coupled receptor 17 mediates acute neuronal injury and late microgliosis after focal cerebral ischemia in rats. Neuroscience 202:42–57. https://doi.org/10.1016/j.neuroscience.2011.11.066

    Article  CAS  PubMed  Google Scholar 

  54. Webster CM, Hokari M, McManus A, Tang XN, Ma H, Kacimi R, Yenari MA (2013) Microglial P2Y12 deficiency/inhibition protects against brain ischemia. PLoS ONE 8(8):e70927. https://doi.org/10.1371/journal.pone.0070927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamauchi K, Imai T, Shimazawa M, Iwama T, Hara H (2017) Effects of ticagrelor in a mouse model of ischemic stroke. Scientific Rep 7(1):12088. https://doi.org/10.1038/s41598-017-12205-w

    Article  CAS  Google Scholar 

  56. Cotrina ML, Lou N, Tome-Garcia J, Goldman J, Nedergaard M (2017) Direct comparison of microglial dynamics and inflammatory profile in photothrombotic and arterial occlusion evoked stroke. Neuroscience 343:483–494. https://doi.org/10.1016/j.neuroscience.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  57. Milner R, Crocker SJ, Hung S, Wang X, Frausto RF, del Zoppo GJ (2007) Fibronectin- and vitronectin-induced microglial activation and matrix metalloproteinase-9 expression is mediated by integrins alpha5beta1 and alphavbeta5. J Immunol 178(12):8158–8167. https://doi.org/10.4049/jimmunol.178.12.8158

    Article  CAS  PubMed  Google Scholar 

  58. Zrzavy T, Machado-Santos J, Christine S, Baumgartner C, Weiner HL, Butovsky O, Lassmann H (2018) Dominant role of microglial and macrophage innate immune responses in human ischemic infarcts. Brain Pathol 28(6):791–805. https://doi.org/10.1111/bpa.12583

    Article  CAS  PubMed  Google Scholar 

  59. Almutairi MM, Gong C, Xu YG, Chang Y, Shi H (2016) Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci CMLS 73(1):57–77. https://doi.org/10.1007/s00018-015-2050-8

    Article  CAS  PubMed  Google Scholar 

  60. Lou N, Takano T, Pei Y, Xavier AL, Goldman SA, Nedergaard M (2016) Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proc Natl Acad Sci USA 113(4):1074–1079. https://doi.org/10.1073/pnas.1520398113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG (2006) Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37(4):1087–1093. https://doi.org/10.1161/01.STR.0000206281.77178.ac

    Article  PubMed  Google Scholar 

  62. Nishioku T, Matsumoto J, Dohgu S, Sumi N, Miyao K, Takata F, Shuto H, Yamauchi A, Kataoka Y (2010) Tumor necrosis factor-alpha mediates the blood-brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells. J Pharmacol Sci 112(2):251–254

    Article  CAS  PubMed  Google Scholar 

  63. Shigemoto-Mogami Y, Hoshikawa K, Sato K (2018) Activated microglia disrupt the blood-brain barrier and induce chemokines and cytokines in a rat in vitro model. Front Cell Neurosci 12:494. https://doi.org/10.3389/fncel.2018.00494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nishioku T, Dohgu S, Takata F, Eto T, Ishikawa N, Kodama KB, Nakagawa S, Yamauchi A, Kataoka Y (2009) Detachment of brain pericytes from the basal lamina is involved in disruption of the blood-brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell Mol Neurobiol 29(3):309–316. https://doi.org/10.1007/s10571-008-9322-x

    Article  CAS  PubMed  Google Scholar 

  65. Jolivel V, Bicker F, Biname F, Ploen R, Keller S, Gollan R, Jurek B, Birkenstock J, Poisa-Beiro L, Bruttger J, Opitz V, Thal SC, Waisman A, Bauerle T, Schafer MK, Zipp F, Schmidt MHH (2015) Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol 129(2):279–295. https://doi.org/10.1007/s00401-014-1372-1

    Article  PubMed  Google Scholar 

  66. Kim TJ, Lee JS, Kang MK, Nam KW, Lee CH, Mo H, Jeong HY, Yoon BW, Ko SB (2019) Clopidogrel may decrease the risk of post-stroke infection after ischaemic stroke. Eur J Neurol 26(2):261–267. https://doi.org/10.1111/ene.13801

    Article  CAS  PubMed  Google Scholar 

  67. Mansour A, Bachelot-Loza C, Nesseler N, Gaussem P, Gouin-Thibault I (2020) P2Y(12) Inhibition beyond thrombosis: effects on inflammation. Int J Mol Sci 21(4):E1391. https://doi.org/10.3390/ijms21041391

    Article  CAS  PubMed  Google Scholar 

  68. Tsai MJ, Ou SM, Shih CJ, Chao PW, Wang LF, Shih YN, Li SY, Kuo SC, Hsu YT, Chen YT (2015) Association of prior antiplatelet agents with mortality in sepsis patients: a nationwide population-based cohort study. Intensive Care Med 41(5):806–813. https://doi.org/10.1007/s00134-015-3760-y

    Article  CAS  PubMed  Google Scholar 

  69. Thomas MR, Outteridge SN, Ajjan RA, Phoenix F, Sangha GK, Faulkner RE, Ecob R, Judge HM, Khan H, West LE, Dockrell DH, Sabroe I, Storey RF (2015) Platelet P2Y12 inhibitors reduce systemic inflammation and its prothrombotic effects in an experimental human model. Arterioscler Thromb Vasc Biol 35(12):2562–2570. https://doi.org/10.1161/atvbaha.115.306528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gurbel PA, Bliden KP, Tantry US (2006) Effect of clopidogrel with and without eptifibatide on tumor necrosis factor-alpha and C-reactive protein release after elective stenting: results from the CLEAR PLATELETS 1b study. J Am Coll Cardiol 48(11):2186–2191. https://doi.org/10.1016/j.jacc.2005.12.084

    Article  CAS  PubMed  Google Scholar 

  71. Paruchuri S, Tashimo H, Feng C, Maekawa A, Xing W, Jiang Y, Kanaoka Y, Conley P, Boyce JA (2009) Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor. J Exp Med 206(11):2543–2555. https://doi.org/10.1084/jem.20091240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. An X, Jiang G, Cheng C, Lv Z, Liu Y, Wang F (2018) Inhibition of platelets by clopidogrel suppressed ang ii-induced vascular inflammation, oxidative stress, and remodeling. J Am Heart Assoc 7(21):e009600. https://doi.org/10.1161/jaha.118.009600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schrottmaier WC, Kral JB, Badrnya S, Assinger A (2015) Aspirin and P2Y12 Inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb Haemost 114(3):478–489. https://doi.org/10.1160/th14-11-0943

    Article  PubMed  Google Scholar 

  74. Wang XL, Deng HF, Li T, Miao SY, Xiao ZH, Liu MD, Liu K, Xiao XZ (2019) Clopidogrel reduces lipopolysaccharide-induced inflammation and neutrophil-platelet aggregates in an experimental endotoxemic model. J Biochem Mol Toxicol 33(4):e22279. https://doi.org/10.1002/jbt.22279

    Article  CAS  PubMed  Google Scholar 

  75. Binsaleh NK, Wigley CA, Whitehead KA, van Rensburg M, Reynisson J, Pilkington LI, Barker D, Jones S, Dempsey-Hibbert NC (2018) Thieno[2,3-b]pyridine derivatives are potent anti-platelet drugs, inhibiting platelet activation, aggregation and showing synergy with aspirin. Eur J Med Chem 143:1997–2004. https://doi.org/10.1016/j.ejmech.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  76. Ogawa T, Hashimoto M, Niitsu Y, Jakubowski JA, Tani Y, Otsuguro K-I, Asai F, Sugidachi A (2009) Effects of prasugrel, a novel P2Y(12) inhibitor, in rat models of cerebral and peripheral artery occlusive diseases. Eur J Pharmacol 612(1–3):29–34. https://doi.org/10.1016/j.ejphar.2009.03.073

    Article  CAS  PubMed  Google Scholar 

  77. Sugidachi A, Mizuno M, Ohno K, Jakubowski JA, Tomizawa A (2016) The active metabolite of prasugrel, R-138727, improves cerebral blood flow and reduces cerebral infarction and neurologic deficits in a non-human primate model of acute ischaemic stroke. Eur J Pharmacol 788:132–139. https://doi.org/10.1016/j.ejphar.2016.06.023

    Article  CAS  PubMed  Google Scholar 

  78. Tomizawa A, Ohno K, Jakubowski JA, Mizuno M, Sugidachi A (2015) Prasugrel reduces ischaemic infarct volume and ameliorates neurological deficits in a non-human primate model of middle cerebral artery thrombosis. Thromb Res 136(6):1224–1230. https://doi.org/10.1016/j.thromres.2015.09.013

    Article  CAS  PubMed  Google Scholar 

  79. Frelinger AL 3rd, Jakubowski JA, Li Y, Barnard MR, Fox ML, Linden MD, Sugidachi A, Winters KJ, Furman MI, Michelson AD (2007) The active metabolite of prasugrel inhibits ADP-stimulated thrombo-inflammatory markers of platelet activation: Influence of other blood cells, calcium, and aspirin. Thromb Haemost 98(1):192–200

    CAS  PubMed  Google Scholar 

  80. Totani L, Dell'Elba G, Martelli N, Di Santo A, Piccoli A, Amore C, Evangelista V (2012) Prasugrel inhibits platelet-leukocyte interaction and reduces inflammatory markers in a model of endotoxic shock in the mouse. Thromb Haemost 107(6):1130–1140. https://doi.org/10.1160/th11-12-0867

    Article  CAS  PubMed  Google Scholar 

  81. Johnston LR, La Flamme AC, Larsen PD, Harding SA (2015) Prasugrel inhibits platelet-enhanced pro-inflammatory CD4+ T cell responses in humans. Atherosclerosis 239(1):283–286. https://doi.org/10.1016/j.atherosclerosis.2015.01.006

    Article  CAS  PubMed  Google Scholar 

  82. Buono C, Binder CJ, Stavrakis G, Witztum JL, Glimcher LH, Lichtman AH (2005) T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci USA 102(5):1596–1601. https://doi.org/10.1073/pnas.0409015102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Diehl P, Olivier C, Halscheid C, Helbing T, Bode C, Moser M (2010) Clopidogrel affects leukocyte dependent platelet aggregation by P2Y12 expressing leukocytes. Basic Res Cardiol 105(3):379–387. https://doi.org/10.1007/s00395-009-0073-8

    Article  CAS  PubMed  Google Scholar 

  84. Boulaftali Y, Owens AP 3rd, Beale A, Piatt R, Casari C, Lee RH, Conley PB, Paul DS, Mackman N, Bergmeier W (2016) CalDAG-GEFI deficiency reduces atherosclerotic lesion development in mice. Arterioscler Thromb Vasc Biol 36(5):792–799. https://doi.org/10.1161/atvbaha.115.306347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Evans DJ, Jackman LE, Chamberlain J, Crosdale DJ, Judge HM, Jetha K, Norman KE, Francis SE, Storey RF (2009) Platelet P2Y(12) receptor influences the vessel wall response to arterial injury and thrombosis. Circulation 119(1):116–122. https://doi.org/10.1161/circulationaha.107.762690

    Article  CAS  PubMed  Google Scholar 

  86. Badrnya S, Schrottmaier WC, Kral JB, Yaiw KC, Volf I, Schabbauer G, Soderberg-Naucler C, Assinger A (2014) Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler Thromb Vasc Biol 34(3):571–580. https://doi.org/10.1161/atvbaha.113.302919

    Article  CAS  PubMed  Google Scholar 

  87. Ganbaatar B, Fukuda D, Salim HM, Nishimoto S, Tanaka K, Higashikuni Y, Hirata Y, Yagi S, Soeki T, Sata M (2018) Ticagrelor, a P2Y12 antagonist, attenuates vascular dysfunction and inhibits atherogenesis in apolipoprotein-E-deficient mice. Atherosclerosis 275:124–132. https://doi.org/10.1016/j.atherosclerosis.2018.05.053

    Article  CAS  PubMed  Google Scholar 

  88. West LE, Steiner T, Judge HM, Francis SE, Storey RF (2014) Vessel wall, not platelet, P2Y12 potentiates early atherogenesis. Cardiovasc Res 102(3):429–435. https://doi.org/10.1093/cvr/cvu028

    Article  CAS  PubMed  Google Scholar 

  89. Steinhubl SR, Badimon JJ, Bhatt DL, Herbert JM, Luscher TF (2007) Clinical evidence for anti-inflammatory effects of antiplatelet therapy in patients with atherothrombotic disease. Vas Med 12(2):113–122. https://doi.org/10.1177/1358863x07077462

    Article  Google Scholar 

  90. Preusch MR, Rusnak J, Staudacher K, Mogler C, Uhlmann L, Sievers P, Bea F, Katus HA, Blessing E, Staudacher I (2016) Ticagrelor promotes atherosclerotic plaque stability in a mouse model of advanced atherosclerosis. Drug Design Dev Ther 10:2691–2699. https://doi.org/10.2147/dddt.S105718

    Article  CAS  Google Scholar 

  91. Lee CW, Hwang I, Park CS, Lee H, Park DW, Kang SJ, Lee SW, Kim YH, Park SW, Park SJ (2011) Comparison of differential expression of P2Y(1)(2) receptor in culprit coronary plaques in patients with acute myocardial infarction versus stable angina pectoris. Am J Cardiol 108(6):799–803. https://doi.org/10.1016/j.amjcard.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  92. Rauch BH, Rosenkranz AC, Ermler S, Böhm A, Driessen J, Fischer JW, Sugidachi A, Jakubowski JA, Schrör K (2010) Regulation of functionally active P2Y12 ADP receptors by thrombin in human smooth muscle cells and the presence of P2Y12 in carotid artery lesions. Arterioscler Thromb Vasc Biol 30(12):2434–2442. https://doi.org/10.1161/atvbaha.110.213702

    Article  CAS  PubMed  Google Scholar 

  93. Lee CH, Hsieh MJ, Liu KS, Cheng CW, Chang SH, Liu SJ, Wang CJ, Hsu MY, Hung KC, Yeh YH, Chen WJ, Hsieh IC, Juang JH, Wen MS (2018) Promoting vascular healing using nanofibrous ticagrelor-eluting stents. Int J Nanomed 13:6039–6048. https://doi.org/10.2147/ijn.S166785

    Article  CAS  Google Scholar 

  94. Hogberg C, Svensson H, Gustafsson R, Eyjolfsson A, Erlinge D (2010) The reversible oral P2Y12 antagonist AZD6140 inhibits ADP-induced contractions in murine and human vasculature. Int J Cardiol 142(2):187–192. https://doi.org/10.1016/j.ijcard.2008.12.091

    Article  PubMed  Google Scholar 

  95. Shim R, Wong CH (2016) Ischemia, immunosuppression and infection-tackling the predicaments of post-stroke complications. Int J Mol Sci 17(1):64. https://doi.org/10.3390/ijms17010064

    Article  CAS  PubMed Central  Google Scholar 

  96. Westendorp WF, Nederkoorn PJ, Vermeij JD, Dijkgraaf MG, van de Beek D (2011) Post-stroke infection: a systematic review and meta-analysis. BMC Neurol 11:110. https://doi.org/10.1186/1471-2377-11-110

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ulvenstam A, Kajermo U, Modica A, Jernberg T, Soderstrom L, Mooe T (2014) Incidence, trends, and predictors of ischemic stroke 1 year after an acute myocardial infarction. Stroke 45(11):3263–3268. https://doi.org/10.1161/strokeaha.114.005770

    Article  CAS  PubMed  Google Scholar 

  98. Trenk D, Hochholzer W (2014) Genetics of platelet inhibitor treatment. Br J Clin Pharmacol 77(4):642–653. https://doi.org/10.1111/bcp.12230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li X, Liu C, Zhu X, Wei H, Zhang H, Chen H, Chen G, Yang D, Sun H, Shen Z, Zhang Y, Li W, Yang J, Liu Y, Lai X, Gong Y, Liu X, Li Y, Zhong D, Niu J, Liu B, Ding Y (2018) Evaluation of tolerability, pharmacokinetics and pharmacodynamics of vicagrel, a novel P2Y12 antagonist, in healthy Chinese volunteers. Front Pharmacol 9:643. https://doi.org/10.3389/fphar.2018.00643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Janssen PW, ten Berg JM, Hackeng CM (2014) The use of platelet function testing in PCI and CABG patients. Blood Rev 28(3):109–121. https://doi.org/10.1016/j.blre.2014.03.004

    Article  PubMed  Google Scholar 

  101. Tsigkou V, Siasos G, Rovos K, Tripyla N, Tousoulis D (2018) Peripheral artery disease and antiplatelet treatment. Curr Opin Pharmacol 39:43–52. https://doi.org/10.1016/j.coph.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  102. Savi P, Herbert JM (2005) Clopidogrel and ticlopidine: P2Y12 adenosine diphosphate-receptor antagonists for the prevention of atherothrombosis. Semin Thromb Hemost 31(2):174–183. https://doi.org/10.1055/s-2005-869523

    Article  CAS  PubMed  Google Scholar 

  103. Garcia C, Maurel-Ribes A, Nauze M, N'Guyen D, Martinez LO, Payrastre B, Senard JM, Gales C, Pons V (2019) Deciphering biased inverse agonism of cangrelor and ticagrelor at P2Y12 receptor. Cell Mol Life Sci CMLS 76(3):561–576. https://doi.org/10.1007/s00018-018-2960-3

    Article  CAS  PubMed  Google Scholar 

  104. Galatro TF, Holtman IR, Lerario AM, Vainchtein ID, Brouwer N, Sola PR, Veras MM, Pereira TF, Leite REP, Möller T, Wes PD, Sogayar MC, Laman JD, den Dunnen W, Pasqualucci CA, Oba-Shinjo SM, Boddeke EWGM, Marie SKN, Eggen BJL (2017) Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 20(8):1162–1171. https://doi.org/10.1038/nn.4597

    Article  CAS  PubMed  Google Scholar 

  105. Mildner A, Huang H, Radke J, Stenzel W, Priller J (2017) P2Y(12) receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia 65(2):375–387. https://doi.org/10.1002/glia.23097

    Article  PubMed  Google Scholar 

  106. Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P, Tipton T, Chapman MA, Riecken K, Beccari S, Sierra A, Molnár Z, Cragg MS, Garaschuk O, Perry VH, Gomez-Nicola D (2017) Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain. Cell Rep 18(2):391–405. https://doi.org/10.1016/j.celrep.2016.12.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H (2017) Loss of 'homeostatic' microglia and patterns of their activation in active multiple sclerosis. Brain 140(7):1900–1913. https://doi.org/10.1093/brain/awx113

    Article  PubMed  PubMed Central  Google Scholar 

  108. Offner H, Vandenbark AA, Hurn PD (2009) Effect of experimental stroke on peripheral immunity: CNS ischemia induces profound immunosuppression. Neuroscience 158(3):1098–1111. https://doi.org/10.1016/j.neuroscience.2008.05.033

    Article  CAS  PubMed  Google Scholar 

  109. Kamel H, Iadecola C (2012) Brain-immune interactions and ischemic stroke: clinical implications. Arch Neurol 69(5):576–581. https://doi.org/10.1001/archneurol.2011.3590

    Article  PubMed  PubMed Central  Google Scholar 

  110. Veltkamp R, Gill D (2016) Clinical trials of immunomodulation in ischemic stroke. Neurotherapeutics 13(4):791–800. https://doi.org/10.1007/s13311-016-0458-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2016ZX09101031) and (Grant No. 2018ZX09301043) and China Pharmaceutical University “Double First-Class” Construction Technology Innovation Team Project (Grant No. CPU2018GY23) and (Grant No. CPU2018GY24).

Author information

Authors and Affiliations

Authors

Contributions

FL and DX were involved in collecting information and writing a draft manuscript; KH and XG performed information consolidation and were involved in modifying article; YL was involved in selecting theme. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yunman Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Xu, D., Hou, K. et al. The role of P2Y12 receptor inhibition in ischemic stroke on microglia, platelets and vascular smooth muscle cells. J Thromb Thrombolysis 50, 874–885 (2020). https://doi.org/10.1007/s11239-020-02098-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-020-02098-4

Keywords

Navigation