Skip to main content
Log in

ABO blood group influences transfusion and survival after cardiac surgery

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

ABO dependent variation in von Willebrand factor (vWf) and procoagulant factor VIII (FVIII) is a plausible mechanism for modulating perioperative hemostasis and bleeding. Group AB has the highest and group O the lowest vWf and FVIII levels. Therefore, we tested the hypothesis that ABO blood group is associated with perioperative transfusion and subsequent survival after coronary revascularization. This retrospective study combined demographic, operative, and transfusion data, including follow-up for a median of 2,096 days, for consecutive aortocoronary bypass (CABG) and CABG/valve procedures from 1996–2009 at a tertiary referral University Heart Center. Between group differences were compared by a Kruskall Wallis test, and hazard ratios [95 % confidence intervals] are reported for mortality risk-adjusted Cox proportional hazards regression analysis. From 15,454 patients, follow-up records were available for 13,627 patients: 6,413 group O, 5,248 group A, 1,454 group B, and 435 group AB. Packed red blood cells were the most commonly transfused blood product (3 [0–5] units), while group AB received 2 [0–5] units (Kruskall Wallis Chi squared value for between group differences = 8.2; p = 0.04). Group AB favored improved long-term, postoperative survival (Hazard ratio = 0.82 [95 %CI 0.68–0.98]; p = 0.03), which became evident approximately a year after surgery. In conclusion, the procoagulant phenotype of blood group AB is associated with fewer transfusions and improved late survival after cardiac surgery. Whether this finding is related to fewer perioperative transfusions, a reduction in later bleeding or other mechanisms remains speculative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parsonnet V, Dean D, Bernstein AD (2009) A method of uniform stratification of risk for evaluating the results of surgery in acquired adult heart disease. Circulation 79:I3–12

    Google Scholar 

  2. Hannan EL, Kilburn H Jr, Racz M, Shields E, Chassin MR (1994) Improving the outcomes of coronary artery bypass surgery in New York state. JAMA 271:761–766

    Article  CAS  PubMed  Google Scholar 

  3. Nashef SA, Roques F, Hammill BG, Peterson ED, Michel P, Grover FL, Wyse RK, Ferguson TB (2002) Validation of European system for cardiac operative risk evaluation (euroscore) in North American cardiac surgery. Eur J Cardiothorac Surg 22:101–105

    Article  PubMed  Google Scholar 

  4. Koch CG, Li L, Sessler DI, Figueroa P, Hoeltge GA, Mihaljevic T, Blackstone EH (2008) Duration of red-cell storage and complications after cardiac surgery. N Engl J Med 358:1229–1239

    Article  CAS  PubMed  Google Scholar 

  5. Vamvakas EC, Carven JH (2002) Allogeneic blood transfusion and postoperative duration of mechanical ventilation: effects of red cell supernatant, platelet supernatant, plasma components and total transfused fluid. Vox Sang 82:141–149

    Article  CAS  PubMed  Google Scholar 

  6. Podgoreanu MV, White WD, Morris RW, Mathew JP, Stafford-Smith M, Welsby IJ, Grocott HP, Milano CA, Newman MF, Schwinn DA (2006) Inflammatory gene polymorphisms and risk of postoperative myocardial infarction after cardiac surgery. Circulation 114:I275–1281

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Mathew JP, Rinder CS, Howe JG, Fontes M, Crouch J, Newman MF, Phillips-Bute B, Smith BR (2001) Platelet pla2 polymorphism enhances risk of neurocognitive decline after cardiopulmonary bypass. Multicenter Study of Perioperative Ischemia (MCSPI) Research Group. Ann Thorac Surg 71:663–666

    Article  CAS  PubMed  Google Scholar 

  8. Jenkins PV, O’Donnell JS (2006) ABO blood group determines plasma von Willebrand factor levels: a biologic function after all? Transfusion 46:1836–1844

    Article  CAS  PubMed  Google Scholar 

  9. Kamphuisen PW, Eikenboom JC, Rosendaal FR, Koster T, Blann AD, Vos HL, Bertina RM (2001) High factor VIII antigen levels increase the risk of venous thrombosis but are not associated with polymorphisms in the von Willebrand factor and factor VIII gene. Br J Haematol 115:156–158

    Article  CAS  PubMed  Google Scholar 

  10. O’Donnell J, Boulton FE, Manning RA, Laffan MA (2002) Amount of H antigen expressed on circulating von Willebrand factor is modified by ABO blood group genotype and is a major determinant of plasma von Willebrand factor antigen levels. Arterioscler Thromb Vasc Biol 22:335–341

    Article  PubMed  Google Scholar 

  11. Souto JC, Almasy L, Soria JM, Buil A, Stone W, Lathrop M, Blangero J, Fontcuberta J (2003) Genome-wide linkage analysis of von Willebrand factor plasma levels: results from the gait project. Thromb Haemost 89:468–474

    CAS  PubMed  Google Scholar 

  12. Orstavik KH, Magnus P, Reisner H, Berg K, Graham JB, Nance W (1985) Factor VIII and factor IX in a twin population. Evidence for a major effect of ABO locus on factor VIII level. Am J Hum Genet 37:89–101

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Moeller A, Weippert-Kretschmer M, Prinz H, Kretschmer V (2001) Influence of ABO blood groups on primary hemostasis. Transfusion 41:56–60

    Article  CAS  PubMed  Google Scholar 

  14. Welsby IJ, Jones R, Pylman J, Mark JB, Brudney CS, Phillips-Bute B, Mathew JP, Campbell ML, Stafford-Smith M (2007) ABO blood group and bleeding after coronary artery bypass graft surgery. Blood Coagul Fibrinolysis 18:781–785

    Article  PubMed  Google Scholar 

  15. Shaw AD, Stafford-Smith M, White WD, Phillips-Bute B, Swaminathan M, Milano C, Welsby IJ, Aronson S, Mathew JP, Peterson ED, Newman MF (2008) The effect of aprotinin on outcome after coronary-artery bypass grafting. N Engl J Med 358:784–793

    Article  CAS  PubMed  Google Scholar 

  16. Wu O, Bayoumi N, Vickers MA, Clark P (2008) ABO(H) blood groups and vascular disease: a systematic review and meta-analysis. J Thromb Haemost 6:62–69

    Article  CAS  PubMed  Google Scholar 

  17. Ohira T, Cushman M, Tsai MY, Zhang Y, Heckbert SR, Zakai NA, Rosamond WD, Folsom AR (2007) ABO blood group, other risk factors and incidence of venous thromboembolism: the longitudinal investigation of thromboembolism etiology (LITE). J Thromb Haemost 5:1455–1461

    Article  CAS  PubMed  Google Scholar 

  18. Souto JC, Almasy L, Muniz-Diaz E, Soria JM, Borrell M, Bayen L, Mateo J, Madoz P, Stone W, Blangero J, Fontcuberta J (2000) Functional effects of the ABO locus polymorphism on plasma levels of von Willebrand factor, factor VIII, and activated partial thromboplastin time. Arterioscler Thromb Vasc Biol 20:2024–2028

    Article  CAS  PubMed  Google Scholar 

  19. Morelli VM, de Visser MC, van Tilburg NH, Vos HL, Eikenboom JC, Rosendaal FR, Bertina RM (2007) ABO blood group genotypes, plasma von Willebrand factor levels and loading of von Willebrand factor with a and b antigens. Thromb Haemost 97:534–541

    CAS  PubMed  Google Scholar 

  20. Folsom AR, Wu KK, Rosamond WD, Sharrett AR, Chambless LE (1997) Prospective study of hemostatic factors and incidence of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 96:1102–1108

    Article  CAS  PubMed  Google Scholar 

  21. Dentali F, Sironi AP, Ageno W et al (2012) Non-O blood type is the commonest genetic risk factor for VTE: results from a meta-analysis of the literature. Semin Thromb Hemost 38:535–548

    Article  PubMed  Google Scholar 

  22. Sousa NC, Anicchino-Bizzacchi JM, Locatelli MF, Castro V, Barjas-Castro ML (2007) The relationship between ABO groups and subgroups, factor VIII and von Willebrand factor. Haematologica 92:236–239

    Article  CAS  PubMed  Google Scholar 

  23. Wiggins KL, Smith NL, Glazer NL, Rosendaal FR, Heckbert SR, Psaty BM, Rice KM, Lumley T (2009) ABO genotype and risk of thrombotic events and hemorrhagic stroke. J Thromb Haemost 7:263–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ketch TR, Turner SJ, Sacrinty MT, Lingle KC, Applegate RJ, Kutcher MA, Sane DC (2008) ABO blood types: influence on infarct size, procedural characteristics and prognosis. Thromb Res 123:200–205

    Article  CAS  PubMed  Google Scholar 

  25. Conlan MG, Folsom AR, Finch A, Davis CE, Sorlie P, Marcucci G, Wu KK (1993) Associations of factor VIII and von Willebrand factor with age, race, sex, and risk factors for atherosclerosis. The Atherosclerosis Risk in Communities (ARIC) Study. Thromb Haemost 70:380–385

    CAS  PubMed  Google Scholar 

  26. Carter YM, Caps MT, Meissner MH (2002) Deep venous thrombosis and ABO blood group are unrelated in trauma patients. J Trauma 52:112–116

    Article  PubMed  Google Scholar 

  27. Mynster T, Nielsen HJ (2000) The impact of storage time of transfused blood on postoperative infectious complications in rectal cancer surgery. Danish ranx05 Colorectal Cancer Study Group. Scand J Gastroenterol 35:212–217

    Article  CAS  PubMed  Google Scholar 

  28. Offner PJ, Moore EE, Biffl WL, Johnson JL, Silliman CC, Offner PJ, Moore EE, Biffl WL, Johnson JL, Silliman CC (2002) Increased rate of infection associated with transfusion of old blood after severe injury. Arch Surg 37:711–716; (discussion 716–717)

  29. Popovsky MA (2006) Pulmonary consequences of transfusion: trali and taco. Transfus Apher Sci 34:243–244

    Article  PubMed  Google Scholar 

  30. Vamvakas EC (2002) Possible mechanisms of allogeneic blood transfusion-associated postoperative infection. Transfus Med Rev 16:144–160

    Article  PubMed  Google Scholar 

  31. Gill JC, Endres-Brooks J, Bauer PJ, Marks WJ Jr, Montgomery RR (1987) The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 69:1691–1695

    CAS  PubMed  Google Scholar 

  32. Zhu K, Amin MA, Kim MJ, Katschke KJ Jr, Park CC, Koch AE (2003) A novel function for a glucose analog of blood group H antigen as a mediator of leukocyte-endothelial adhesion via intracellular adhesion molecule 1. J Biol Chem 278:21869–21877

    Article  CAS  PubMed  Google Scholar 

  33. Paterson AD, Lopes-Virella MF, Waggott D, Boright AP, Hosseini SM, Carter RE, Shen E, Mirea L, Bharaj B, Sun L, Bull SB (2009) Genome-wide association identifies the ABO blood group as a major locus associated with serum levels of soluble E-selectin. Arterioscler Thromb Vasc Biol 29:1958–1967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Barbalic M, Dupuis A et al (2010) Large-scale genomic studies reveal central role of ABO in sP-selectin and sICAM-1 levels. Hum Mol Genet 19:1863–1872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Paterson AD, Lopes-Virella MF, Waggott et al D, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group (2009) Genome-wide association identifies the ABO blood group as a major locus associated with serum levels of soluble E-selectin. Arterioscler Thromb Vasc Biol 29:1958–1967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Qi L, Cornelis MC, Kraft P, Jensen M, van Dam RM, Sun Q, Girman CJ, Laurie CC, Mirel DB, Hunter DJ, Rimm E, Hu FB (2010) Genetic variants in ABO blood group region, plasma soluble E-selectin levels and risk of type 2 diabetes. Hum Mol Genet 19:1856–1862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Innes AL, McGrath KW, Dougherty RH, McCulloch CE, Woodruff PG, Seibold MA, Okamoto KS, Ingmundson KJ, Solon MC, Carrington SD, Fahy JV (2011) The H antigen at epithelial surfaces is associated with susceptibility to asthma exacerbation. Am J Respir Crit Care Med 183:189–194

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian J. Welsby.

Additional information

For members of the Cardiothoracic Anesthesiology Research Endeavors (CARE), Department of Anesthesiology see Appendix 1.

A guest editor was appointed for this manuscript.

Appendices

Appendix 1

Members of the Cardiothoracic Anesthesiology Research Endeavors (CARE), Department of Anesthesiology, Duke University Medical Center.

Director: Joseph P. Mathew M.D.

Anesthesiology: Solomon Aronson M.D., Katherine P. Grichnik M.D., Steven Hill M.D., G. Burkhard Mackensen M.D., PhD., Joseph P. Mathew M.D., Mark F. Newman M.D, Barbara Phillips-Bute Ph.D., Mihai V. Podgoreanu M.D., Andrew D. Shaw M.D., Mark Stafford-Smith M.D., Madhav Swaminathan M.D., Ian Welsby M.D., William D. White M.P.H., Lisa Anderson, Lauren Baker B.S., Bonita L. Funk R.N., Roger L. Hall A.A.S., Gladwell Mbochi A.A.S., Tiffany Bisanar R.N., Prometheus T. Solon M.D., Peter Waweru.

Perfusion Services: Kevin Collins, B.S., C.C.P., Greg Smigla, B.S., C.C.P., Ian Shearer, B.S., C.C.P.

Surgery: Thomas A. D’Amico M.D., R. Duane Davis M.D., Donald D. Glower M.D., R. David Harpole M.D., G. Chad Hughes M.D., James Jaggers M.D., Shu Lin M.D., Andrew Lodge M.D., James E. Lowe M.D., Carmelo Milano M.D., Peter K. Smith M.D., Jeffrey Gaca MD, Mark Onatis MD.

Appendix 2

Packed Red Blood Cell Transfusion Algorithm for cardiac surgical patients with chest tube output <400 mL/h and no ongoing ischemia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welsby, I.J., Phillips-Bute, B., Mathew, J.P. et al. ABO blood group influences transfusion and survival after cardiac surgery. J Thromb Thrombolysis 38, 402–408 (2014). https://doi.org/10.1007/s11239-013-1045-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-013-1045-2

Keywords

Navigation