Skip to main content
Log in

Physicochemical Principles of the Production of High-Temperature Superconducting Phases in the Ln–Ba–Cu–O System

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The results from investigations into the formation, structure, and physicochemical properties of new high-temperature superconducting (HTSC) phases in Ln–Ba–Cu–O systems are summarized. The effect of the composition of the superconducting phase, features of the crystal structure of the HTSC REE cuprates, their morphology, and crystal defects on the temperature of the transition to the superconducting state is analyzed. The advantages and disadvantages of existing approaches to the production of superconducting ceramics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Aliabadi, Y. Akhavan Farshchi, and M. Akhavan, Physica C, No. 469, 2012-2014 (2009).

  2. Yu. D. Tret’yakov and E. A. Gudilin, Usp. Khim., 69, No. 1, 3-40 (2000).

    Google Scholar 

  3. Yu. D. Tret’yakov and E. A. Goodilin, Russ. J. Inorg. Chem., 46, No. 3, S203-S234 (2001).

    Google Scholar 

  4. B. N. Lin, Y. H. Lin, H. M. Luo, et al., Physica C, 341-348, 407-410 (2000).

    Article  CAS  Google Scholar 

  5. Yu. D. Tret’yakov, E. A. Gudilin, D. V. Peryshkov, and D. M. Itkis, Usp. Khim., 73, No. 9, 954-973 (2004).

    Google Scholar 

  6. A. E. Sychev and A. G. Merzhanov, Usp. Khim., No. 2, 157-170 (2004).

  7. P. E. Kazin and Yu. D. Tret’yakov, Usp. Khim., 72, No. 10, 960-977 (2003).

    Article  Google Scholar 

  8. E. Sudhakar Reddy and G. J. Schmitz, Supercond. Sci. Technol., 15, L21-24 (2002).

    Article  Google Scholar 

  9. Z. V. Lin, G. D. Gu, A. S. Mahmoud, and G. J. Rassel, Physica C, 349, 95-102 (2001).

    Article  CAS  Google Scholar 

  10. A. V. Kravchenko, E. A. Gudilin, I. V. Arkhangel’skii, and Yu. D. Tret’yakov, Dokl. Akad. Nauk, 385, No. 4, 24-28 (2002).

    Google Scholar 

  11. E. Bruneel, T. Oku, J. Degrieck, and I. Van Driessche, Eng. Mater., 206, No. 2, 637-640 (2002).

    Google Scholar 

  12. V. Garnier, I. Monot-Laffez, and G. Desgardin, Mater. Sci. Eng. B, 83, 48-54 (2001).

    Article  Google Scholar 

  13. S. Mathur, H. Shen, and N. Lecerf, J. Sol-Gel Sci. Technol., 24, 57-68 (2002).

    CAS  Google Scholar 

  14. I. Yamaguchi, T. Manabe, M. Sohma, et al., Physica C, 382, 269-275 (2002).

    Article  CAS  Google Scholar 

  15. Xu. Youwen, M. J. Kramer, K. V. Dennis, et al., Physica C, 333, 195-206 (2000).

    Article  Google Scholar 

  16. H. Shimizy, T. Tomimatsu, and K. Motoya, Physica C, 341-348, 621-622 (2000).

    Article  Google Scholar 

  17. J. G. Lin, C. Y. Huang, and J. C. Ho, Physica C, 341-348, 625-626 (2000).

    Article  CAS  Google Scholar 

  18. L. E. Kozeeva, M. Yu. Kameneva, N. F. Beizel’, and V. E. Fedorov, Neorgan. Mat., 38, No. 10, 1219-1224 (2002).

  19. T. Matsushita, Supercond. Sci. Technol., 13, No. 6, 730-737 (2000).

    Article  CAS  Google Scholar 

  20. S. Shibata, A. Yamamoto, Y. Feng, et al., Physica C, 357-360, 523-526 (2001).

    Article  CAS  Google Scholar 

  21. F. Venturini, M. Opel, and E. Hacl, J. Phys. Chem Solids, 63, No. 12, 2345-2348 (2002).

    Article  CAS  Google Scholar 

  22. Y. Zhang, J. Zhang, S. Tan, and G. Xu, Physica C, 341-348, 643-644 (2000).

    Article  CAS  Google Scholar 

  23. V. V. Belousov and A. A. Klimashin, Usp. Khim., 82, No. 3, 273-288 (2013).

    Article  Google Scholar 

  24. N. S. Kini and A. M. Umarji, Physica C, 349, 257-264 (2001).

    Article  CAS  Google Scholar 

  25. A. Tsetsekou, E. Georgiopoulos, and C. Andreouli, Supercond. Sci. Technol., 15, No. 11, 1610-1616 (2002).

    Article  CAS  Google Scholar 

  26. P. Udomsamuthirun, T. Kruaehong, T. Nilkamjon, and S. Ratreng, J. Supercond. Novel Magn., 23, 1377-1380 (2010).

    Article  CAS  Google Scholar 

  27. A. Heidari, S. Vedad, N. Heidari, and M. Ghorbani, Materials, 5, 2816 (2012).

    Article  Google Scholar 

  28. I. Van Driessche, B. Schoofs, E. Bruneel, and S. Hoste, J. Eur. Ceram. Soc., 24, No. 6, 1823-1826 (2004).

    Article  Google Scholar 

  29. P. Udomsamuthirun, T. Kruaehong, T. Nilkamjon, and S. Ratreng, http://www.superconductors.org/Y71118.htm.

  30. V. A. Lysenko, V. V. Kuz’menko, I. A. Uspenskaya, et al., Ros. Khim. Zh., 45, No. 3, 86 (2001).

    CAS  Google Scholar 

  31. Yu. M. Gerbshtein and E. I. Nikulin, Fiz. Tverd. Tela, 54, No. 3, 433 (2012).

    Google Scholar 

  32. I. Felner, Superconducting and Related Oxides: Physics and Nanoengineering V, I. Bozovic, D. Pavuna (eds.), SPIE Press, Bellingam, WA (2002), p. 39. (Proc. SPIE, Vol. 4811).

    Chapter  Google Scholar 

  33. A. M. Abakumov, M. G. Rozova, E. I. Ardashnikova, and E. V. Antipov, Usp. Khim., 71, 442 (2002).

    Article  Google Scholar 

  34. X. Wei, P. Hug, R. Figi, et al., Appl. Catal. B, 94, 27-37 (2010).

    Article  CAS  Google Scholar 

  35. M. A. Pena and J. L. G. Fierro, Chem. Rev., 101, 1981 (2001).

    Article  CAS  Google Scholar 

  36. N. Li, A. Boreave, J.-P. Deloume, and F. Gaillard, Solid State Ionics, 179, 1396-1400 (2008).

    Article  CAS  Google Scholar 

  37. M. M. Natile, E. Ugel, Ch. Maccato, and A. Glisenti, Appl. Catal. B, 72, 351-362 (2007).

    Article  CAS  Google Scholar 

  38. H. Taguchi, S. Yamasaki, S. Itadani, et al., Catal. Commun., 9, 1913-1915 (2008).

    Article  CAS  Google Scholar 

  39. A. Worayingyong, P. Kangvansura, and S. Kityakarn, Colloids Surfaces A, 320, 123-129 (2008).

    Article  CAS  Google Scholar 

  40. A. Worayingyong, P. Kangvansura, S. Ausadasuk, and P. Praserthdam, Colloids Surfaces A, 315, 217-225 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nedilko.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 50, No. 6, pp. 331-339, November-December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedilko, S.A., Tymoshchuk, O.B. Physicochemical Principles of the Production of High-Temperature Superconducting Phases in the Ln–Ba–Cu–O System. Theor Exp Chem 50, 335–343 (2015). https://doi.org/10.1007/s11237-015-9385-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-015-9385-y

Key words

Navigation