Skip to main content
Log in

Effective capacity of cooperative relaying systems with non-orthogonal multiple access

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper, we present analytical results on the effective capacity (EC) for a dual-hop cooperative network employing non-orthogonal multiple access and the decode-and-forward half-duplex relaying protocol. Assuming that wireless propagation is modelled by the Nakagami-m distribution, novel analytical results for the EC are deduced. These analytical results are further extended to the generalized fading channels, modeled by a mixture gamma distribution. Our proposed analysis is validated by numerical results and Monte-Carlo simulations. Besides, the numerically evaluated results have demonstrated the impact of various system-level parameters on the performance of the considered system, including the impact of fading, the power allocation coefficient and the delay constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. An efficient method for the numerical evaluation of the bivariate G-function using Matlab is available in [13].

References

  1. Hwang, E., Hao, X., & Atkin, G. E. (2023). Design of incidence matrices with limited constellation expansion in massive connectivity NOMA systems. IEEE Access, 11, 6524–6540.

    Article  Google Scholar 

  2. Gao, R., Qi, P., & Zhang, Z. H. (2020). Performance analysis of spectrum sensing schemes based on energy detector in generalized Gaussian noise. Signal Processing, 181(2), 107893–107993.

    Google Scholar 

  3. Lei, H., et al. (2023). On secure CDRT with NOMA and physical-layer network coding. IEEE Transactions on Communications, 71(1), 381–396.

    Article  Google Scholar 

  4. Wu, D., & Negi, R. (2003). Effective capacity: A wireless link model for support of quality of service. IEEE Transactions on Wireless Communications, 2(4), 630–643.

    Google Scholar 

  5. Shah, S. W. H., Mahboob-Ur-Rahman, M., Mian, A. N., Dobre, O. A., & Crowcroft, J. (2021). Effective capacity analysis of HARQ-enabled D2D communication in multi-tier cellular networks. IEEE Transactions on Vehicular Technology, 70(9), 9144–9159.

    Article  Google Scholar 

  6. Shah, S. W. H., Mahboob-Ur-Rahman, M., Mian, A. N., Imran, A., Mumtaz, S., & Dobre, O. A. (2019). On the impact of mode selection on effective capacity of device-to-device communication. IEEE Wireless Communications Letters, 8(3), 945–948.

    Article  Google Scholar 

  7. Shah, S. W. H., Mian, A. N., Mumtaz, S., Al-Dulaimi, A., Chih-Lin, I., & Crowcroft, J. (2022). Statistical QoS analysis of reconfigurable intelligent surface-assisted D2D communication. IEEE Transactions on Vehicular Technology, 71(7), 7343–7358.

    Article  Google Scholar 

  8. Shah, S. W. H., Mian, A. N., & Crowcroft, J. (2020). Statistical QoS guarantees for licensed-unlicensed spectrum interoperable D2D communication. IEEE Access, 8, 27277–27290.

    Article  Google Scholar 

  9. Shah, S. W. H., Pavan-Deram, S., & Widmer, J. (2023). On the effective capacity of RIS-enabled mmWave networks with outdated CSI. In IEEE Conference on Computer Communications (pp. 1–10).

  10. Qiao, D., Gursoy, M. C., & Velipasalar, S. (2012). Effective capacity of two-hop wireless communication systems. IEEE Transactions on Information Theory, 59(2), 873–885.

    Article  MathSciNet  Google Scholar 

  11. Karatza, G. P., Peppas, K. P., & Sagias, N. C. (2018). Effective capacity of multisource multidestination cooperative systems under cochannel interference. IEEE Transactions on Vehicular Technology, 67(9), 8411–8421.

    Article  Google Scholar 

  12. Peppas, K. P., Mathiopoulos, P. T., & Yang, J. (2016). On the effective capacity of amplify-and-forward multihop transmission over arbitrary and correlated fading channels. IEEE Wireless Communications Letters, 5(3), 248–251.

    Article  Google Scholar 

  13. Peppas, K. P. (2012). A new formula for the average bit error probability of dual-hop amplify-and-forward relaying systems over generalized shadowed fading channels. IEEE Wireless Communications Letters, 1(2), 85–88.

    Article  Google Scholar 

  14. Kanellopoulou, K. D., Peppas, K. P., & Mathiopoulos, P. T. (2020). Effective capacity of \(L_{p}\)-norm diversity receivers over generalized fading channels under adaptive transmission schemes. IEEE Transactions on Communications, 68(2), 1240–1253.

    Article  Google Scholar 

  15. Yang, Y., Zhou, D. W., Zhan, D. C., Xiong, H., Jiang, Y., & Yang, J. (2023). Cost-effective incremental deep model: matching model capacity with the least sampling. IEEE Transactions on Knowledge and Data Engineering, 35(4), 3575–3588.

    Article  Google Scholar 

  16. Li, X., Liu, H., Li, G., Liu, Y., Zeng, M., & Ding, Z. (2022). Effective capacity analysis of AMBC-NOMA communication systems. IEEE Transactions on Vehicular Technology, 71(10), 11257–11261.

    Article  Google Scholar 

  17. Zeng, J., Xiao, C., Wu, T., Ni, W., Liu, R. P., & Guo, Y. J. (2023). Uplink non-orthogonal multiple access with statistical delay requirement: Effective capacity, power allocation, and \(\alpha \) fairness. IEEE Transactions on Wireless Communications, 22(2), 1298–1313.

  18. Shah, S. W. H., Mahboob-Ur-Rahman, M., Mian, A. N., Dobre, O. A., & Crowcroft, J. (2021). Effective capacity analysis of HARQ-enabled D2D communication in multi-tier cellular networks. IEEE Transactions on Vehicular Technology, 70(9), 9144–9159.

    Article  Google Scholar 

  19. Liu, H., Li, G., Li, X., Liu, Y., Huang, G., & Ding, Z. (2022). Effective capacity analysis of STAR-RIS-assisted NOMA networks. IEEE Wireless Communications Letters, 11(9), 1930–1934.

    Article  Google Scholar 

  20. Atapattu, S., Tellambura, C., & Jiang, H. (2011). A mixture gamma distribution to model the SNR of wireless channels. IEEE Transactions on Wireless Communications, 10(12), 4193–4203.

    Article  Google Scholar 

  21. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products. Mathematics of Computation, 20(96), 1157–1160.

    Google Scholar 

  22. Agarwal, R. P., Bhatt, R. C., Pandey, R. C., & Srivastava, H. M. (1965). An extension of Meijer’s G-function. Proceedings of the National Academy of Sciences, India Part A.

  23. Prudnikov, A. P. (1988). Integrals and series. American Journal of Physics, 56(10), 957–958.

    Article  ADS  Google Scholar 

  24. Lei, H., Chao, G., Ansari, I. S., Guo, Y., Pan, G., & Qaraqe, K. A. (2016). On physical layer security over SIMO generalized-K fading channels. IEEE Transactions on Vehicular Technology, 65(9), 7780–7785.

    Article  Google Scholar 

  25. Shah, S. W. H., Li, R., Rahman, M. M. U., Mian, A. N., Aman, W., & Crowcroft, J. (2021). Statistical QoS guarantees of a device-to-device link assisted by a full-duplex relay. Transactions on Emerging Telecommunications Technologies, 32(11), e4339.

    Article  Google Scholar 

  26. Guo, N., Ge, J., Bu, Q., & Zhang, C. (2019). Multi-user cooperative non-orthogonal multiple access scheme with hybrid full/half-duplex user-assisted relaying. IEEE Access, 7, 39207–39226.

    Article  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (Grant No. 61472343), Natural Science Foundation of Jiangsu Province (BK20170512) and Graduate International Academic Exchange Special Fund Projects of Yangzhou University support this work.

Funding

National Natural Science Foundation of China (Grant No. 61472343), Natural Science Foundation of Jiangsu Province (BK20170512).

Author information

Authors and Affiliations

Authors

Contributions

Jing Yang derived the main analytical results and wrote the main mauscript text. Yuxin Liu and Weiran Jiang were responsible for completing the numerical and Monte-Carlo simulation results. Jie Ding polished the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jing Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix A. Proof of Proposition 1

The EC of \(s_1\), i.e., \(R_{s_1 } \left( \theta \right) \), can be expressed as

$$\begin{aligned} \!\!R_{s_1 } \left( \theta \right) =\!-\frac{1}{\theta } \ln \left( \int _0^\infty \!\!\!\left( \frac{1 \!+\!\rho z_1}{1\!+\!\rho a_2 z_1}\right) ^{\!-\!\frac{\alpha }{2 \ln 2}} f_{z_1}(z_1) \textrm{d}z_1 \right) . \end{aligned}$$
(17)

In the generalized composite fading environment, the CDF of \(|h_\ell |^2, \ell \in \{SR,SD,RD\}\), is given as [20],

$$\begin{aligned} F_{|h_\ell |^2}\left( x\right) =\sum \limits _{i=1}^{N_\ell } \alpha _i^l (\xi _i^l)^{-\beta _i} \gamma \left( \beta _i^l, \xi _i^l x \right) . \end{aligned}$$
(18)

From (18), the CDFs of \(Z_1\) and \(Z_2\) can be obtained as follows,

$$\begin{aligned} F_{Z_1}(Z_1)&=1-(1-F_{\lambda _{SR}}(Z_1))(1-F_{\lambda _{SD}}(Z_1))\nonumber \\&=\sum \limits _{t\in \{SR,SD\}}\sum \limits _{i=1}^{N_t}\alpha _i^t(\xi _i^t)^{-\beta _i^t}\gamma \left( \beta _i^t, \xi _i^tZ_1\right) \nonumber \\&-\prod \limits _{t\in \{SR,SD\}}\sum \limits _{i=1}^{N_t}\alpha _i^t\left( \xi _i^t\right) ^{-\beta _i^t}\gamma \left( \beta _i^t, \xi _i^tZ_1\right) {,} \end{aligned}$$
(19)

and

$$\begin{aligned} F_{Z_2}(z)&=\sum \limits _{t\in \{SR,SD\}}\sum \limits _{i=1}^{N_t}\alpha _i^t(\xi _i^t)^{-\beta _i^t}\gamma \left( \beta _i^t, \frac{\xi _i^tz}{a}\right) \nonumber \\&-\prod \limits _{t\in \{SR,SD\}}\sum \limits _{i=1}^{N_t}\alpha _i^t\left( \xi _i^t\right) ^{-\beta _i^t}\gamma \left( \beta _i^t, \xi _i^tz\right) {,} \end{aligned}$$
(20)

respectivly. Using \(\gamma \left( n,x \right) =\int _0^x e^{-t} t^{n-1} \textrm{d}t \) and \(\Gamma \left( n,x \right) =(n-1)! e^{-x} \sum \limits _{m=0}^{n\!-\!1} \frac{x^m}{m!}\), from (19), the PDF of \(Z_1\) can be computed as

$$\begin{aligned}&f_{Z_1}(z)=\sum \limits _{t\in \{SR,SD\}}\sum _{i=1}^{N_t}\alpha _i^t z^{\beta _i^t-1}e^{-z\xi _i^t}\nonumber \\&\!\!-\!\!\!\!\!\prod \limits _{t\in \{SR,SD\}}\!\!\left( \sum \limits _{i=1}^{N_t}\sum \limits _{j=1}^{N_{\bar{t}}}\sum \limits _{r=0}^{\infty }\frac{(-1)^r\alpha _i^t\alpha _j^{{\bar{t}}} \left( \xi _j^{{\bar{t}}}\right) ^r z^{\beta _i^t+\beta _j^{\bar{t}}+r-1}e^{-z\xi _i^t}}{r!\left( r+\beta _j^{{\bar{t}}}\right) } \right) . \end{aligned}$$
(21)

By substituting (21) into (17) and performing some algebraic manipulations, integrals of the form

$$\begin{aligned}&\mathcal {I} =\int _0^\infty \left( 1+\rho z_1 \right) ^{ - \frac{\alpha }{{2\ln 2}}} \left( 1+\rho a_2 z_1 \right) ^{n} \nonumber \\&\quad \times \left( 1+\rho a_2 z_1 \right) ^{-n + {\frac{\alpha }{2\ln 2}}} z_1^{{i} + {j}} e^{-\omega _\Sigma z_1} \textrm{d}{z_1}, \end{aligned}$$
(22)

appears and needs to be solved. Expressing the exponential and power functions in terms of G-functions, using [23, Eq. (8.4.2.5)] and [23, Eq. (8.4.3.1)], as

$$\begin{aligned} e^{-\omega {z_1}} =G_{0,1}^{1,0}\left( {\omega {z_1}}{\mathop {\big |}\nolimits ^{\cdot }_{0}} \right) , \end{aligned}$$
$$\begin{aligned} \left( 1+\rho z_1 \right) ^{ - \frac{\alpha }{{2\ln 2}}} = \frac{1}{\Gamma \left( {\frac{\alpha }{{2\ln 2}}} \right) } G_{1,1}^{1,1}\left( {\rho {z_1} \left| \begin{array}{l} 1 - \frac{\alpha }{{2\ln 2}}\\ 0 \end{array} \right. } \right) , \end{aligned}$$
$$\begin{aligned} \left( 1+\rho a_2 z_1 \right) ^{-n + {\frac{\alpha }{2\ln 2}}}&=\frac{ G_{1,1}^{1,1}\left( {\rho {a_2}{z_1} \left| \begin{array}{l} 1 -n + \frac{\alpha }{{2\ln 2}}\\ 0 \end{array} \right. } \right) }{\Gamma \left( n- {\frac{\alpha }{{2\ln 2}}} \right) }, \end{aligned}$$

and with the help of binomial theorem as well as [24, Eq. (20)], (22) can be evaluated. Then, (14) can be proved.

The PDF of \(Z_2\) is similar to (21), by substituting \(f_{Z_2}(z_2)\) into (23), the follow integral \(\mathcal {K}\) appears as

$$\begin{aligned} \mathcal {K}&=\mathop \sum \limits _{{{i}} = 1}^{{N_{SR}}} \alpha _{{{i}}}^{SR}{\left( {\frac{1}{{{a_2}}}} \right) ^{\beta _{{{i}}}^{SR}}}\int _0^\infty {{{\left( {1 + \rho {z_2}} \right) }^{ - \frac{\alpha }{{2\ln 2}}}}} {Z_2}^{ - 1 + \beta _{{{i}}}^{SR}}\\&\times {\mathrm{{e}}^{ - {Z_2}\frac{{\xi _{{{i}}}^{SR}}}{{{a_2}}}}}d{z_2}\\&=\sum \limits _{{i}=1}^{N_{SR}} \alpha ^{SR}_{{i}} \left( \frac{1}{a_2} \right) ^{ \beta ^{SR}_{{i}}} u\left( \frac{ \xi ^{SR}_{{i}}}{a_2},-1+ \beta ^{SR}_{{i}} \right) . \end{aligned}$$

So (15) can be proved. Thus, Proposition 4 can be proved.

Appendix B. Proof of Proposition 3

The EC of \(s_2\) can be expressed as

$$\begin{aligned} R_{s_2 } \left( \theta \right)&=-\frac{1}{\theta } \ln \left( \int _0^\infty \left( 1+\rho z_2 \right) ^{-\frac{\alpha }{2 \ln 2}} f_{Z_2}(z_2) \textrm{d}z_2 \right) . \end{aligned}$$
(23)

By substituting \(f_{Z_2}(z_2)\) into (23), the follow integrals \(\mathcal {J}\) and \(\mathcal {K}^{'}\) appear as

$$\begin{aligned} \mathcal {J}&= \int _0^\infty \left( 1+\rho z_2 \right) ^{-\frac{\alpha }{2 \ln 2}} \omega ' e^{-\omega ' z_2} dz_2 \\&= \frac{\omega '}{\rho } e^{\frac{\omega '}{\rho }} \in {i}^\infty t^{-\frac{\alpha }{2 \ln 2}} e^{\frac{-\omega ' t}{\rho }} dt, \end{aligned}$$

and

$$\begin{aligned} \mathcal {K^{'}}&=\sum \limits _{{i}=1}^{m_{SR}\!-\!1}\!\sum \limits _{{j}=1}^{m_{RD}\!-\!1} f({i},{j}) \omega ' \\&\quad \times \int _0^\infty \left( 1+\rho z_2 \right) ^{-\frac{\alpha }{2 \ln 2}} z^{t_3 + t_4} e^{-\omega ' z_2} \textrm{d}z_2. \end{aligned}$$

Utilizing the definition of \(E_n(x)\), we obtain

$$\begin{aligned} \mathcal {J} =\frac{\omega '}{\rho } {e^{\frac{\omega '}{\rho }}} {E_{\frac{\alpha }{2\ln 2}}} \left[ {\frac{\omega '}{\rho }} \right] , \end{aligned}$$
(24)

and

$$\begin{aligned} \mathcal {K} =\sum \limits _{{i}=1}^{m_{SR}-1}\sum \limits _{{j}=1}^{m_{RD}-1} f({i},{j}) \omega ' u\left( \rho ,{{i}}+{{j}} \right) . \end{aligned}$$
(25)

With the help of (23), (24) and (25), Proposition 3 is proved.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, Y., Jiang, W. et al. Effective capacity of cooperative relaying systems with non-orthogonal multiple access. Telecommun Syst (2024). https://doi.org/10.1007/s11235-024-01108-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11235-024-01108-7

Keywords

Navigation