Skip to main content
Log in

Performance analysis of digital transmission in interference-limited networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper aims at investigating the impact of interference on the performance of a wireless communication system operating over the Fisher–Snedecor \(\mathcal {F}\) composite fading channel. In particular, we consider an interference-limited network scenario, where both links: the main link and interfere links, are modeled by \(\mathcal {F}\) fading channels. Then, closed-form expressions for the probability density function (PDF) and cumulative distribution function (CDF) are derived for such scenario. Based on the obtained PDF and CDF, closed-form expressions for the outage probability, average bit error rates (BERs) for several modulation schemes, and average channel capacity are derived. Furthermore, we derive the expressions for the asymptotic performance for these above-mentioned metrics in order to provide more insights into the impact of different channel parameters on the system performance. To provide further insights into the impact of interference, the expressions for the performance metrics under the no-interference setup have been also derived and compared to its interference-limited counterparts. The excellent agreement between the analytical and Monte-Carlo simulations validates our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hansen, F., & Meno, F. I. (1977). Mobile fading-Rayleigh and lognormal superimposed. IEEE Transactions on Vehicular Technology, 26(4), 332–335.

    Article  Google Scholar 

  2. Mei, Z., Johnston, M., Le Goff, S., & Chen, L. (2016). Error probability analysis of M-QAM on Rayleigh fading channels with impulsive noise. In 2016 IEEE 17th international workshop on signal processing advances in wireless communications (SPAWC) (pp. 1–5). IEEE.

  3. Abdi, A., & Kaveh, M. (1998). K distribution: An appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels. Electronics Letters, 34(9), 851–852.

    Article  Google Scholar 

  4. Nakagami, M. (1960). The m-distribution? A general formula of intensity distribution of rapid fading. In Statistical methods in radio wave propagation (pp. 3–36). Elsevier.

  5. Basar, E. (2019). Reconfigurable intelligent surfaces for doppler effect and multipath fading mitigation, arXiv preprint arXiv:1912.04080

  6. Lei, H., Zhang, H., Ansari, I. S., Gao, C., Guo, Y., Pan, G., & Qaraqe, K. A. (2016). Secrecy outage performance for SIMO underlay cognitive radio systems with generalized selection combining over Nakagami-\(m\) channels. IEEE Transactions on Vehicular Technology, 65(12), 10126–10132.

    Article  Google Scholar 

  7. Dixit, D., & Sahu, P. (2014). Performance analysis of rectangular QAM with SC receiver over Nakagami-m fading channels. IEEE Communications Letters, 18(7), 1262–1265.

    Article  Google Scholar 

  8. Beaulieu, N. C., & Zhang, Y. (2017). Linear diversity combining on correlated and unequal power Nakagami-0.5 fading channels. IEEE Communications Letters, 21(5), 1003–1006.

    Article  Google Scholar 

  9. Aalo, V. A., Mukasa, C., & Efthymoglou, G. P. (2015). Effect of mobility on the outage and BER performances of digital transmissions over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 65(4), 2715–2721.

    Article  Google Scholar 

  10. Nguyen, B. C., Hoang, T. M., & Tran, P. T. (2019). Performance analysis of full-duplex decode-and-forward relay system with energy harvesting over Nakagami-m fading channels. AEU-International Journal of Electronics and Communications, 98, 114–122.

    Article  Google Scholar 

  11. Wang, J.-Y., Lin, S.-H., Cai, W., & Dai, J. (2019). ESR analysis over ST-MRC multi-input multi-output Nakagami fading channels, IET Information Security.

  12. Silva, H. S., Alencar, M. S., Queiroz, W. J., Almeida, D. B., & Madeiro, F. (2018). Closed-form expression for the bit error probability of the-qam for a channel subjected to impulsive noise and Nakagami fading. Wireless Communications and Mobile Computing, 6, 66.

    Google Scholar 

  13. García-Corrales, C., Cañete, F. J., & Paris, J. F. (2014). Capacity of \(\kappa \)\(\mu \) shadowed fading channels. International Journal of Antennas and Propagation, 6, 66.

    Google Scholar 

  14. Li, X., Li, J., Li, L., Jin, J., Zhang, J., & Zhang, D. (2017). Effective rate of MISO systems over \(\kappa \)\(\mu \) shadowed fading channels. IEEE Access, 5, 10605–10611.

    Article  Google Scholar 

  15. Srinivasan, M., & Kalyani, S. (2018). Secrecy capacity of \(\kappa \)\(\mu \) shadowed fading channels. IEEE Communications Letters, 22(8), 1728–1731.

    Article  Google Scholar 

  16. Iwata, S., Ohtsuki, T., & Kam, P.-Y. (2017) Secure outage probability over \(\kappa \)\(\mu \) fading channels. In 2017 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

  17. Kumar, S. (2015). Approximate outage probability and capacity for \(\kappa \)\(\mu \) shadowed fading. IEEE Wireless Communications Letters, 4(3), 301–304.

    Article  Google Scholar 

  18. Bilim, M. (2019). A performance study on diversity receivers over \(\kappa \)\(\mu \) shadowed fading channels. AEU-International Journal of Electronics and Communications, 66, 152934.

    Article  Google Scholar 

  19. Barrios, R., & Dios, F. (2013). Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence. Optics & Laser Technology, 45, 13–20.

    Article  Google Scholar 

  20. Wang, P., Zhang, J., Guo, L., Shang, T., Cao, T., Wang, R., & Yang, Y. (2015). Performance analysis for relay-aided multihop BPPM FSO communication system over exponentiated Weibull fading channels with pointing error impairments. IEEE Photonics Journal, 7(4), 1–20.

    Google Scholar 

  21. Boluda-Ruiz, R., García-Zambrana, A., Castillo-Vázquez, C., Castillo-Vázquez, B., & Hranilovic, S. (2017). Outage performance of exponentiated Weibull FSO links under generalized pointing errors. Journal of Lightwave Technology, 35(9), 1605–1613.

    Article  Google Scholar 

  22. Badarneh, O. S., & Almehmadi, F. S. (2019). The effects of different noise types and mobility on error rate of digital modulation schemes over millimeter-wave Weibull fading channels. Wireless Networks, 25(5), 2259–2268.

    Article  Google Scholar 

  23. Badarneh, O. S., da Costa, D. B., Sofotasios, P. C., Muhaidat, S., & Cotton, S. L. (2018). On the sum of Fisher–Snedecor \({\cal{F}} \) variates and its application to maximal-ratio combining. IEEE Wireless Communications Letters, 7(6), 966–969.

    Article  Google Scholar 

  24. Aldalgamouni, T., Ilter, M. C., Badarneh, O. S., & Yanikomeroglu, H. (2018). Performance analysis of Fisher–Snedecor \({\cal{F}}\) composite fading channels. In 2018 IEEE Middle East and North Africa communications conference (MENACOMM) (pp. 1–5). IEEE.

  25. Badarneh, O. S., Muhaidat, S., Sofotasios, P. C., Cotton, S. L., Rabie, K., & da Costa, D. B. (2018). The N-Fisher–Snedecor \({\cal{F}}\) cascaded fading model. In 2018 14th International conference on wireless and mobile computing, networking and communications (WiMob) (pp. 1–7). IEEE.

  26. Kapucu, N. (2019). Error performance of digital modulations over Fisher–Snedecor \({\cal{F}}\) fading channels. AEU-International Journal of Electronics and Communications, 6, 66.

    Google Scholar 

  27. Chen, S., Zhang, J., Karagiannidis, G. K., & Ai, B. (2018). Effective rate of MISO systems over Fisher–Snedecor \({\cal{F}}\) fading channels. IEEE Communications Letters, 22(12), 2619–2622.

    Article  Google Scholar 

  28. Almehmadi, F., & Badarneh, O. (2018). On the effective capacity of Fisher–Snedecor \({\cal{F}}\) fading channels. Electronics Letters, 54(18), 1068–1070.

    Article  Google Scholar 

  29. Badarneh,O. S., Shawaqfeh, M. K., & Kadoch, M. (2020). Performance analysis of mobile IoT networks over composite fading channels. In 2020 International wireless communications and mobile computing (IWCMC) (pp. 1234–1239). IEEE.

  30. Shawaqfeh, M. K., & Badarneh, O. S. (2021). Performance of mobile networks under composite F fading channels. Digital Communications and Networks, 6, 66.

    Google Scholar 

  31. Kumar, S., Singh, R. K., & Karmeshu, A. (2019). Exact distributions for bit error rate and channel capacity in free-space optical communication. IET Communications, 13(18), 2966–2972.

    Article  Google Scholar 

  32. Yoo, S. K., Cotton, S. L., Sofotasios, P. C., Matthaiou, M., Valkama, M., & Karagiannidis, G. K. (2017). The Fisher–Snedecor \({\cal{F}}\) distribution: A simple and accurate composite fading model. IEEE Communications Letters, 21(7), 1661–1664.

    Article  Google Scholar 

  33. Lo, T. K. (1999). Maximum ratio transmission. In 1999 IEEE international conference on communications (Cat. No. 99CH36311) (vol. 2, pp. 1310–1314). IEEE.

  34. Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of integrals, series, and products. Academic Press.

  35. Goldsmith, A. (2005). Wireless communications. Cambridge University Press.

  36. Adamchik, V., & Marichev, O. (1990). The algorithm for calculating integrals of hypergeometric type functions and its realization in reduce system. In Proceedings of the international symposium on symbolic and algebraic computation (pp. 212–224). ACM.

  37. Prudnikov, A. P., Bryckov, Y. A., & Maricev, O. I. (1983). Integrals and series of special functions (vol. 3. Moscow: Science.

  38. Costa, D. B., den Ding, H., & Ge, J. (2011). Interference-limited relaying transmissions in dual-hop cooperative networks over Nakagami-m fading. IEEE Communications Letters, 15(5), 503–505.

    Article  Google Scholar 

  39. Zhong, C., Jin, S., & Wong, K. (2010). Dual-hop systems with noisy relay and interference-limited destination. IEEE Transactions on Communications, 58(3), 764–768.

    Article  Google Scholar 

  40. Wang, Z., & Giannakis, G. (2003). A simple and general approach to the average and outage performance analysis in fading. IEEE Transactions on Communications, 51(8), 1389–1398.

    Article  Google Scholar 

  41. Kilbas, A. A. (2004). H-transforms: Theory and applications. CRC Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa K. Alshawaqfeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we provide some preliminary definitions and identities that help in the analysis of the system under consideration.

The Meijer’s G-function is defined by means of a one-fold contour integral in the complex plane [37, Eq. (8.2.1.1)], i.e.,

$$\begin{aligned}&\mathrm {G}_{p,q}^{m,n}\left( x\left| \begin{matrix} a_{1},\cdots ,a_{p}\\ b_{1},\cdots ,b_{q}\end{matrix}\right. \right) =\frac{1}{2\pi i}\int _{L}{\varPsi }_1(s)x^{-s}ds,&\end{aligned}$$
(A1)

where

$$\begin{aligned}&{\varPsi }_1\left( s\right) ={\prod _{j=1}^{m}{\varGamma }(b_{j}+s)\prod _{k=1}^{n}{\varGamma }(1-a_{k}-s)\over \prod _{k=n+1}^{p}{\varGamma }(a_{k}+s) \prod _{j=m+1}^{q}{\varGamma }(1-b_{j}-s)}.&\end{aligned}$$

The contour L is a suitable closed contour in the complex s-plane which can be chosen among three types of integration paths. The poles \({\varGamma }(b_{j}+s)\) must not coincide with the poles of \({\varGamma }(1-a_{k}-s)\) (with \(j=1,\ldots ,m\) and \(k=1,\ldots ,n\)).

The Fox H-function [37, Eq. (8.2.1.1)] is defined by means of a one-fold contour integral in the complex plane, similar to the contour integral of the Meijer’s G-function, as

$$\begin{aligned} \begin{aligned} H \begin{array}{l}{m,}{n}\\ {p,}{q}\\ \end{array}\left( {x}\Big |\begin{array}{l}{[a_p,A_p]}\\ {[b_q,B_q]}\end{array}\right)&\equiv H \begin{array}{l}{m,}{n}\\ {p,}{q}\\ \end{array}\left( {x}\Big |\begin{array}{l}{(a_1,A_1), \ldots ,(a_p,A_p)}\\ {(b_1,B_1), \ldots ,(b_q,B_q)}\\ \end{array}\right) \\&= \frac{1}{2\pi i}\int _{L}{\varPsi }_2(s)x^{-s}ds, \end{aligned} \end{aligned}$$
(A2)

where

$$\begin{aligned}&{\varPsi }_2\left( s\right) ={\prod _{j=1}^{m}{\varGamma }(b_{j}+B_j s)\prod _{k=1}^{n}{\varGamma }(1-a_{k}-A_k s)\over \prod _{k=n+1}^{p}{\varGamma }(a_{k}+A_k s) \prod _{j=m+1}^{q}{\varGamma }(1-b_{j}-B_j s)}.&\end{aligned}$$

The Meijer’s G-function is a special case of the Fox H-function. In particular, the Fox-H function reduces to the standard Meijer’s G-function when \(A_1 = \ldots = A_p = B_1 = \ldots = B_q = 1\) [37, Eq. (8.3.2.21)]

$$\begin{aligned} H \begin{array}{l}{m,}{n}\\ {p,}{q}\\ \end{array}\left( {x}\Big |\begin{array}{l}{[a_p,1]}\\ {[b_q,1]}\end{array}\right) = G \begin{array}{l}{m,}{n}\\ {p,}{q}\\ \end{array}\left( {x}\Big |\begin{array}{l}{(a_p)}\\ {(b_q)}\end{array}\right) \end{aligned}$$
(A3)

The Gaussian hypergeometric function is defined as [37, Eq. (7.2.1.1)]

$$\begin{aligned} \begin{aligned} { }_{2} F_{1}(a, b ; c ; z)=\sum _{k=0}^{\infty } \frac{(a)_{k}(b)_{k}}{(c)_{k} k !} z^{k}, \end{aligned} \end{aligned}$$
(A4)

The relation between the Gaussian hypergeometric function is related to the Meijer’s G-function through [37, Eq. (8.4.49.13)]

$$\begin{aligned} { }_{2} F_{1}(a, b ; c ;-x)=\frac{{\varGamma }(c)}{{\varGamma }(a){\varGamma }(b)} G\begin{array}{l}{1,}{2}\\ {2,}{2}\\ \end{array}\left( {x}\Big |\begin{array}{l}{1-a,1-b}\\ {0,1-c} \end{array}\right) \end{aligned}$$
(A5)

Two important identities that are used to reduce the order of the Meijer’s G-function are given by (A6) [37, Eq. (8.2.2.8)] and (A7) [37, Eq. (8.2.2.9)], respectively

$$\begin{aligned} G \begin{array}{l}{m,}{n}\\ {p,}{q}\\ \end{array}\left( {z}\Big |\begin{array}{l}{(a_p)}\\ {(b_{q-1}),a_1}\end{array}\right) = G \begin{array}{l}{m,}{n-1}\\ {p-1}{q-1}\\ \end{array}\left( {z}\Big |\begin{array}{l}{a_{2}, \ldots , a_{p}}\\ {(b_{q-1})}\end{array}\right) \end{aligned}$$
(A6)
$$\begin{aligned} G \begin{array}{l}{m,}{n}\\ {p,}{q}\\ \end{array}\left( {z}\Big |\begin{array}{l}{(a_p)}\\ {(b_{q-1}),a_1}\end{array}\right) = G \begin{array}{l}{m-1,}{n}\\ {p-1}{q-1}\\ \end{array}\left( {z}\Big |\begin{array}{l}{(a_{p-1})}\\ {b_2, \ldots ,b_q}\end{array}\right) \end{aligned}$$
(A7)

The \(\ln (1+x)\) and \(\text {erfc}(\sqrt{x})\) functions can be written in terms of the Meijer’s G-function using [37, Eq. (8.4.6.5)] and [37, Eq. (8.4.14.2)], respectively as follows

$$\begin{aligned} \ln (1+x) = G \begin{array}{l}{1,}{2}\\ {2,}{2}\\ \end{array}\left( {x}\Big |\begin{array}{l}{1,1}\\ {1,0} \end{array}\right) \end{aligned}$$
(A8)
$$\begin{aligned} \text {erfc}(\sqrt{x}) = \frac{1}{\sqrt{\pi }} G \begin{array}{l}{2,}{0}\\ {1,}{2}\\ \end{array}\left( {x}\Big |\begin{array}{l} {1}\\ {0,1/2}\end{array}\right) \end{aligned}$$
(A9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshawaqfeh, M.K., Badarneh, O.S. & Almehmadi, F.S. Performance analysis of digital transmission in interference-limited networks. Telecommun Syst 79, 233–247 (2022). https://doi.org/10.1007/s11235-021-00854-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00854-2

Keywords

Navigation