Skip to main content
Log in

Dynamic link adaptation for filterband multicarrier in networks with diverse service quality and throughput requirements

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The fast evolution in wireless communication standards and enhancement in cellular applications has created an exponential rise in the data rate requirement over the past few decades. The next generation wireless standards, therefore, need not only to provide ultra high data rates with minimum latency, but also to support diverse quality-of-service (QoS) requirements. Filterbank multicarrier (FBMC) scheme provides quite a few advantages over the conventional orthogonal frequency division multiplexing (OFDM) for future wireless networks. In order to achieve adaptive throughput and diverse service quality requirements under varying channel conditions, a link adaptation algorithm for FBMC scheme is proposed in this paper. The aim is to provide the dynamic selection of optimum parameters resulting in diverse modes of operation to ensure the desired and/or best available communication service quality. The proposed link adaptation algorithm incorporates the parameters of required data rate, available channel condition and QoS demand, and dynamically allocates the appropriate FBMC transmission parameters. The proposed scheme has been evaluated for AWGN as well as multipath fading SUI channel models. Simulation results indicate that the proposed algorithm successfully achieves the desired service quality subject to the availability of suitable channel conditions and is also superior to the existing algorithms in terms of block error rate and effective throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kundrapu, S., Dutt, S. I., Koilada, N. K., & Raavi, A. C. (2019). Characteristic analysis of OFDM, FBMC and UFMC modulation schemes for next generation wireless communication network systems. In 3rd International conference on electronics, communication and aerospace technology (ICECA) (pp. 715–721). IEEE.

  2. Farhang-Boroujeny, B., & Kempter, R. (2008). Multicarrier communication techniques for spectrum sensing and communication in cognitive radios. IEEE Communications Magazine, 46(4), 80–85.

    Article  Google Scholar 

  3. John, M. S., & Soumya, J. (2019). Achieving cognitive radio for improved spectrum utilization: An implementation.

  4. Jondral, F. K. (2005). Software-defined radio-basics and evolution to cognitive radio. EURASIP Journal on Wireless Communications and Networking, 2005(3), 652784.

    Article  Google Scholar 

  5. Krishnan, R., Babu, R. G., Kaviya, S., Kumar, N. P., Rahul, C., & Raman, S. S. (2017). Software defined radio (SDR) foundations, technology tradeoffs: A survey. In 2017 IEEE international conference on power, control, signals and instrumentation engineering (ICPCSI) (pp. 2677–2682). IEEE.

  6. Bepari, D., & Mitra, D. (2015). Improved power loading scheme for orthogonal frequency division multiplexing based cognitive radio. IET Communications, 9(16), 2033–2040.

    Article  Google Scholar 

  7. Du, J., & Signell, S. (2007). Comparison of CP-OFDM and OFDM, OQAM in doubly dispersive channels. In Future generation communication and networking (FGCN) (Vol. 2, pp. 207–211). IEEE.

  8. Kaur, S., Kansal, L., Gaba, G. S., & Safarov, N. (2018). Survey of filter bank multicarrier (FBMC) as an efficient waveform for 5G. International Journal of Pure and Applied Mathematics, 118(7), 45–49.

    Google Scholar 

  9. Zafar, A. (2018). Filter bank based multicarrier systems for future wireless networks. Ph.D. dissertation, University of Surrey.

  10. Patchala, S., & Sailaja, M. (2019). Analysis of filter bank multi-carrier system for 5G communications. International Journal of Wireless and Microwave Technologies (IJWMT), 9(4), 39–50.

    Article  Google Scholar 

  11. Kishore, G. S., & Rallapalli, H. (2020). Towards 5G: A survey on waveform contenders. In Advances in decision sciences, image processing, security and computer vision (pp. 243–250). Springer

  12. Alrubaee, S. H., Ismail, M., Altahrawi, M. A., & Burhan, B. B. (2020). Filter bank multi-carrier modulation technique for vehicle-to-vehicle communication. Journal of Communications, 15(7), 566–571.

    Article  Google Scholar 

  13. Gerzaguet, R., Bartzoudis, N., Baltar, L. G., Berg, V., Doré, J.-B., Kténas, D., Font-Bach, O., Mestre, X., Payaró, M., Färber, M., et al. (2017). The 5G candidate waveform race: A comparison of complexity and performance. EURASIP Journal on Wireless Communications and Networking, 2017(1), 1–14.

    Article  Google Scholar 

  14. Geleta, G. H., Molla, D. M., & Fante, K. A. (2018). Comparative study of modulation techniques for 5G networks. In International conference on advances of science and technology (pp. 503–518). Springer.

  15. Miao, G., Himayat, N., & Li, G. Y. (2010). Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on Communications, 58(2), 545–554.

    Article  Google Scholar 

  16. Riback, M., Grant, S., Jongren, G., Tynderfeldt, T., Cairns, D., & Fulghum, T. (2007). MIMO-HSPA testbed performance measurements. In IEEE 18th international symposium on personal, indoor and mobile radio communications (pp. 1–5). IEEE

  17. Reddy, B. S. K., & Lakshmi, B. (2014). Adaptive modulation and coding for mobile-WiMAX using SDR in GNU radio. In 2014 International conference on circuits, systems, communication and information technology applications (CSCITA) (pp. 173–178). IEEE

  18. Muhamad, W. N. W., Sarnin, S. S., Idris, A., & Syahira, A. (2018). Link adaptation algorithm for IEEE 802.11 wireless local area netwoks in fading channel. Indonesian Journal of Electrical Engineering and Computer Science, 12(2), 677–684.

  19. Saha, J., Das, S. S., & Mukherjee, S. (2018). Link adaptation using dynamically allocated thresholds and power control. Wireless Personal Communications, 103(3), 2259–2283.

    Article  Google Scholar 

  20. Alavi, M. A., Fernando, W., Permuna, P., Jayathilake, K., Mathurusha, S., Vithanage, N., & Dhammearatchi, D. (2016). Enhanced QoS support in OFDMA-based WiMAX systems. Compusoft, 5(4), 2090.

    Google Scholar 

  21. Reddy, B. S. K., & Lakshmi, B. (2015). Adaptive modulation and coding with channel state information in OFDM for WiMAX. IJ Image, Graphics and Signal Processing, 1, 61–69.

    Google Scholar 

  22. Wan, L., Zhou, H., Xu, X., Huang, Y., Zhou, S., Shi, Z., & Cui, J.-H. (2014). Adaptive modulation and coding for underwater acoustic OFDM. IEEE Journal of Oceanic Engineering, 40(2), 327–336.

    Article  Google Scholar 

  23. Zeeshan, M., & Khan, S. A. (2016). A novel fuzzy inference-based technique for dynamic link adaptation in SDR wideband waveform. IEEE Transactions on Communications, 64(6), 2602–2609.

    Article  Google Scholar 

  24. Janaki, R. S., & Nagarajan, V. (2018). Fuzzy logic based adaptive modulation system for energy efficient wireless sensor network

  25. Yang, Z., Cai, L., Gulliver, A., He, L., & Pan, J. (2017). Beyond powers of two: Hexagonal modulation and non-binary coding for wireless communication systems. arXiv preprint arXiv:1712.07630.

  26. Mora, H. C., Garzón, N. O., & de Almeida, C. (2018). On the cellular spectral efficiency of MC-CDMA systems with MMSE multiuser detector employing fractional and soft frequency reuse. AEU-International Journal of Electronics and Communications, 84, 34–45.

    Article  Google Scholar 

  27. Shahzad, K., Gulzar, S., Zeeshan, M., & Khan, S. A. (2019). A novel hybrid narrowband/wideband networking waveform physical layer for multiuser multiband transmission and reception in software defined radio. Physical Communication, 36, 100790.

    Article  Google Scholar 

  28. Caus, M., Navarro, M., Mestre, X., & Pérez-Neira, A. (2016). Link adaptation in FBMC/OQAM systems using NB-LDPC codes. In 2016 European conference on networks and communications (EuCNC) (pp. 11–15). IEEE.

  29. Khairy, M. S., Khajeh, A., Eltawil, A. M., & Kurdahi, F. J. (2014). Joint power management and adaptive modulation and coding for wireless communications systems with unreliable buffering memories. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(8), 2456–2465.

    Article  Google Scholar 

  30. Singh, K. (2016). Fuzzy logic based modified adaptive modulation implementation for performance enhancement in ofdm systems. International Journal of Intelligent Systems and Applications, 8(5), 49.

    Article  Google Scholar 

  31. Bedoui, A., & Et-tolba, M. (2020). A neuro-fuzzy based detection approach for HARQ-CC in FBMC-OQAM systems. In 2020 9th IFIP international conference on performance evaluation and modeling in wireless networks (PEMWN) (pp. 1–7). IEEE.

  32. Häring, L. (2018). SINR-based adaptive MIMO FBMC/OQAM transmission with automatic modulation classification. Transactions on Emerging Telecommunications Technologies, 29(12), e3541.

    Article  Google Scholar 

  33. Bellanger, M., Le Ruyet, D., Roviras, D., Terré, M., Nossek, J., Baltar, L., Bai, Q., Waldhauser, D., Renfors, M., Ihalainen, T., et al. (2010). FBMC physical layer: A primer. Phydyas, 25(4), 7–10.

    Google Scholar 

  34. de Almeida, I. B. F., Mendes, L. L., Rodrigues, J. J., & da Cruz, M. A. (2019). 5G waveforms for IoT applications. IEEE Communications Surveys & Tutorials, 21(3), 2554–2567.

    Article  Google Scholar 

  35. Mitra, R. N., & Agrawal, D. P. (2015). 5G mobile technology: A survey. ICT Express, 1(3), 132–137.

    Article  Google Scholar 

  36. Isnawati, A. F., Citra, V. O., & Hendry, J. (2019). Performance analysis of audio data transmission on FBMC-Offset QAM system. In 2019 IEEE international conference on industry 4.0, artificial intelligence, and communications technology (IAICT) (pp. 81–86). IEEE.

  37. Pérez-Neira, A. I., Caus, M., Zakaria, R., Le Ruyet, D., Kofidis, E., Haardt, M., Mestre, X., & Cheng, Y. (2016). MIMO signal processing in offset-QAM based filter bank multicarrier systems. IEEE Transactions on Signal Processing, 64(21), 5733–5762.

    Article  Google Scholar 

  38. Jain, R. (2007). Channel models: A tutorial. In WiMAX forum AATG (Vol. 10).

  39. Kadel, R., Islam, N., Ahmed, K., & Halder, S. J. (2019). Opportunities and challenges for error correction scheme for wireless body area network-a survey. Journal of Sensor and Actuator Networks, 8(1), 1.

    Article  Google Scholar 

  40. Sandoval, F., Poitau, G., & Gagnon, F. (2019). Optimizing forward error correction codes for COFDM with reduced PAPR. IEEE Transactions on Communications, 67(7), 4605–4619.

    Article  Google Scholar 

  41. Garg, S., Sharma, A. K., & Tyagi, A. (2017). Performance analysis of 1/2 code rate convolution encoded DWT-OFDM system with different modulation schemes. International Journal Innovative Research in Science & Engineering, 3, 109–119.

    Google Scholar 

  42. Dhaliwal, S., Singh, N., & Kaur, G. (2017)Performance analysis of convolutional code over different code rates and constraint length in wireless communication. In 2017 International conference on I-SMAC (IoT in social, mobile, analytics and cloud)(I-SMAC) (pp. 464–468). IEEE.

  43. Le, V. H. S., Nour, C. A., Boutillon, E., & Douillard, C. (2019) Dual trellis construction for high-rate punctured convolutional codes. In IEEE 30th international symposium on personal, indoor and mobile radio communications (PIMRC Workshops) (pp. 1–7). IEEE.

  44. Taylor, C. L. (2001). Punctured convolutional coding scheme for multi-carrier multi-antenna wireless systems. Electronics Research Laboratory, College of Engineering, University of...

  45. Ahmed, B., Zeeshan, M., & Gulzar, S. (2019) An efficient algorithm for CFO estimation in FBMC and GFDM under SUI channel models. In 2019 IEEE Latin-American conference on communications (LATINCOM) (pp. 1–6). IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Akhunzada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwana, A.J., Zeeshan, M., Ashraf, T. et al. Dynamic link adaptation for filterband multicarrier in networks with diverse service quality and throughput requirements. Telecommun Syst 79, 109–122 (2022). https://doi.org/10.1007/s11235-021-00845-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00845-3

Keywords

Navigation