Skip to main content

Advertisement

Log in

The cell-free mMIMO networks: mathematical analysis and performance evaluation

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

One of the motivations towards the 5G cellular networks and beyond is the large increase in the supported data rate in both uplink and downlink. Deployment of small size cells, massive MIMO, wherein a large number of antennas are deployed at transmitters and receiver, are effective tools in these networks. Users under cell massive MIMO networks “mMIMO” can provide high data rate. However, the cell-edge user and users, under shadowing, can have a poor performance. Cell-Free networks can provide a satisfied data rate even for shadowed and cell-edge users. In this paper, cell-Free mMIMO networks are mathematically analyzed applying different cooperation mechanisms among the access points APs. Moreover, a new mathematical formula for the throughput, based on BER, is derived. Furthermore, closed formulas for the throughput-BER as well as energy efficiency (EE) performance are derived. Finally, the cognitive radio concept is proposed in order to limit the interference among users accessing the same resources in uplink. Simulation results show that the fully centralized cell-Free mMIMO network has a higher spectral efficiency and energy efficiency than the cellular mMIMO networks at different BER values especially when MMSE is applied. Furthermore, the cognitive radio theory can increase the SE and EE performance of the cell-Free networks when all cooperation mechanisms are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Muirhead, D., Imran, M. A., & Arshad, K. (2016). A survey of the challenges, opportunities and use of multiple antennas in current and future 5G small cell base stations. IEEE Access, 4, 2952–2964. https://doi.org/10.1109/ACCESS.2016.2569483

    Article  Google Scholar 

  2. Yang, Y., Bai, B., & Chen, W. (2017). Spectrum reuse ratio in 5G cellular networks: A matrix graph approach. IEEE Transactions on Mobile Computing, 16(12), 3541–3553. https://doi.org/10.1109/TMC.2017.2696005

    Article  Google Scholar 

  3. Taufique, A., Jaber, M., Imran, A., Dawy, Z., & Yacoub, E. (2017). Planning wireless cellular networks of future: Outlook, challenges and opportunities. IEEE Access, 5, 4821–4845. https://doi.org/10.1109/ACCESS.2017.2680318

    Article  Google Scholar 

  4. Song, F., et al. (2019). Probabilistic caching for small-cell networks with terrestrial and aerial users. IEEE Transactions on Vehicular Technology, 68(9), 9162–9177. https://doi.org/10.1109/TVT.2019.2929839

    Article  Google Scholar 

  5. Xin, Y., Wang, D., Li, J., Zhu, H., Wang, J., & You, X. (2016). Area spectral efficiency and area energy efficiency of massive MIMO cellular systems. IEEE Transactions on Vehicular Technology, 65(5), 3243–3254. https://doi.org/10.1109/TVT.2015.2436896

    Article  Google Scholar 

  6. Shojaeifard, K., Wong, M., Di Renzo, G., Zheng, K., Hamdi, A., & Tang, J. (2017). Massive MIMO-enabled full-duplex cellular networks. IEEE Transactions on Communications, 65(11), 4734–4750. https://doi.org/10.1109/TCOMM.2017.2731768

    Article  Google Scholar 

  7. Han, Y., Rao, B. D., & Lee, J. (2020). Massive uncoordinated access with massive MIMO: A dictionary learning approach. IEEE Transactions on Wireless Communications, 19(2), 1320–1332. https://doi.org/10.1109/TWC.2019.2952843

    Article  Google Scholar 

  8. You, L., et al. (2020). Pilot reuse for vehicle-to-vehicle underlay massive MIMO transmission. IEEE Transactions on Vehicular Technology, 69(5), 5693–5697. https://doi.org/10.1109/TVT.2020.2982013

    Article  Google Scholar 

  9. Björnson, E., Hoydis, J., & Sanguinetti, L. (2018). Massive MIMO has unlimited capacity. IEEE Transactions on Wireless Communications, 17(1), 574–590. https://doi.org/10.1109/TWC.2017.2768423

    Article  Google Scholar 

  10. Sanguinetti, L., Björnson, E., & Hoydis, J. (2020). Toward massive MIMO 2.0: Understanding spatial correlation, interference suppression, and pilot contamination. IEEE Transactions on Communications, 68(1), 232–257. https://doi.org/10.1109/TCOMM.2019.2945792

    Article  Google Scholar 

  11. Thasneem, H., & Joy, M. (2016). Mutual coupling reduction on MIMO antenna. In 2016 International Conference on Emerging Technological Trends (ICETT), Kollam, pp. 1–6. https://doi.org/10.1109/ICETT.2016.7873683.

  12. Khaleel, H. R., Al-Rizzo, H. M., Rucker, D. G., Rahmatallah, Y. A., & Mohan, S. (2011). Mutual coupling reduction of dual-band printed monopoles using MNG metamaterial. In 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, pp. 2219–2222. https://doi.org/10.1109/APS.2011.5996956.

  13. Faraz, F., Li, Q., Chen, X., Abdullah, M., Zhang, S., & Zhang, A. (2019). Mutual coupling reduction for linearly arranged MIMO antenna. In 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, pp. 1–3. https://doi.org/10.1109/CSQRWC.2019.8799266.

  14. Bait Suwailam, M. M., Boybay, M. S., & Ramahi, O. M. (2009). Mutual coupling reduction in MIMO antennas using artificial magnetic materials. In: 2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, Toronto, ON, pp. 1–4. https://doi.org/10.1109/ANTEMURSI.2009.4805043.

  15. Bukkawar, S., & Ahmed, V. (2019). Study of various mutual coupling reduction techniques in MIMO antennas. In 2019 Third International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, pp. 106–113. https://doi.org/10.1109/ICISC44355.2019.9036446.

  16. Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16(3), 1834–1850. https://doi.org/10.1109/TWC.2017.2655515

    Article  Google Scholar 

  17. Nayebi, E., Ashikhmin, A., Marzetta, T. L., Yang, H., & Rao, B. D. (2017). Precoding and power optimization in cell-free massive MIMO systems. IEEE Transactions on Wireless Communications, 16(7), 4445–4459. https://doi.org/10.1109/TWC.2017.2698449

    Article  Google Scholar 

  18. Elhoushy, S., & Hamouda, W. (2020). Towards high data rates in dynamic environments using hybrid cell-free massive MIMO/Small-Cell system. IEEE Wireless Communications Letters. https://doi.org/10.1109/LWC.2020.3021026

    Article  Google Scholar 

  19. Shaik, Z. H., Björnson, E., & Larsson, E. G. (2020). Cell-free massive MIMO with radio stripes and sequential uplink processing. In 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, pp. 1–6. https://doi.org/10.1109/ICCWorkshops49005.2020.9145164.

  20. Papazafeiropoulos, A. K., Kourtessis, P., Renzo, M. D., Chatzinotas, S., & Senior, J. M. (2020). Coverage Probability of cell-free massive MIMO systems. In 2020 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Odessa, Ukraine, 2020, pp. 1–6. https://doi.org/10.1109/BlackSeaCom48709.2020.9235025.

  21. Nguyen, H. V., et al. (2020). On the spectral and energy efficiencies of full-duplex cell-free massive MIMO. IEEE Journal on Selected Areas in Communications, 38(8), 1698–1718. https://doi.org/10.1109/JSAC.2020.3000810

    Article  Google Scholar 

  22. Papazafeiropoulos, A., Ngo, H. Q., Kourtessis, P., Chatzinotas, S., & Senior, J. M. (2020). Optimal energy efficiency in cell-free massive MIMO systems: A stochastic geometry approach. In 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, United Kingdom, pp. 1–7. https://doi.org/10.1109/PIMRC48278.2020.9217353.

  23. Qiu, J., Xu, K., Xia, X., Shen, Z., & Xie, W. (2020). Downlink power optimization for cell-free massive MIMO over spatially correlated rayleigh fading channels. IEEE Access, 8, 56214–56227. https://doi.org/10.1109/ACCESS.2020.2981967

    Article  Google Scholar 

  24. Björnson, E., & Sanguinetti, L. (2020). Making cell-free massive MIMO competitive with MMSE processing and centralized implementation. IEEE Transactions on Wireless Communications, 19(1), 77–90. https://doi.org/10.1109/TWC.2019.2941478

    Article  Google Scholar 

  25. Sboui, L., Rezki, Z., Sultan, A., & Alouini, M. (2019). A new relation between energy efficiency and spectral efficiency in wireless communications systems. IEEE Wireless Communications, 26(3), 168–174. https://doi.org/10.1109/MWC.2019.1800161

    Article  Google Scholar 

  26. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50, 2127–2159.

    Article  Google Scholar 

  27. Wang, B., & Ray Liu, K. J. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.

    Article  Google Scholar 

  28. Alias, D. M., & Ragesh, G. K. (2016). Cognitive radio networks: A survey. In 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, pp. 1981–1986. https://doi.org/10.1109/WiSPNET.2016.7566489.

  29. Shalaby, M., Shokair, M., & Abdo, Y. S. E. (2013). Simulation of cognitive radio system applying different wireless channel models. International Journal of Computer Networks & Communications (IJCNC), 5(2), 181–194.

    Article  Google Scholar 

  30. Shalaby, M., Shokair, M., & Abdo, Y. S. E. (2014). Enhancement of geometry and throughput in LTE femtocells cognitive radio networks. Wireless Personal Communications, 77(1), 649–659.

    Article  Google Scholar 

  31. Shalaby, M., Shokair, M., & Messiha, N. W. (2015). System design and performance analysis of LTE cognitive femtocells. Wireless Personal Communications, 85(4), 2463–2483.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Shalaby.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaby, M., Hussein, H.M., Shokair, M. et al. The cell-free mMIMO networks: mathematical analysis and performance evaluation. Telecommun Syst 77, 625–641 (2021). https://doi.org/10.1007/s11235-021-00776-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00776-z

Keywords

Navigation